Flexible, heteroatoms-rich activated carbon nanofibers with fascinating cross-linked architectures are successfully gained in a facile and controllable way via electrospinning polyacrylonitrile (PAN) /dicyandiamide (DICY) composite nanofibers followed by carbonation and a CO activation process. The unique inter-bonded structures and heteroatoms contents could be easily controlled by adjusting the preoxidation temperature applied in the calcining procedure and the addition of DICY. Significantly, the resultant samples display hierarchical pores with micro/meso/macropores, abundant N, O species doped and unique fiber-fiber interconnections, which considerably boost the electrochemical properties.
View Article and Find Full Text PDFThe development of efficient and abundant transition metal bifunctional electrocatalysts is crucial in sustainable energy utilization. Copper-cobalt bimetallic composites exhibit excellent electrochemical performance but the agglomeration of nanoparticles and phase separation cannot be avoided in high temperature pyrolysis. Herein, Cu(ii) ions are introduced into Co-based zeolitic imidazolate frameworks (ZIF-67) by a polymer-coating method to synthesize copper-cobalt bimetallic composite phosphides (CuCoP).
View Article and Find Full Text PDF