Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system and climate modelling to territorial and urban planning. Global LULC products are continuously developing as remote sensing data and methods grow. However, there still exists low consistency among LULC products due to low accuracy in some regions and LULC types.
View Article and Find Full Text PDFKnowing the extent and environmental drivers of forests is key to successfully restore degraded ecosystems, and to mitigate climate change and desertification impacts using tree planting. Water availability is the main limiting factor for the development of forests in drylands, yet the importance of groundwater resources and palaeoclimate as drivers of their current distribution has been neglected. Here we report that mid-Holocene climates and aquifer trends are key predictors of the distribution of dryland forests worldwide.
View Article and Find Full Text PDFOlive tree growing is an important economic activity in many countries, mostly in the Mediterranean Basin, Argentina, Chile, Australia, and California. Although recent intensification techniques organize olive groves in hedgerows, most olive groves are rainfed and the trees are scattered (as in Spain and Italy, which account for 50% of the world's olive oil production). Accurate measurement of trees biovolume is a first step to monitor their performance in olive production and health.
View Article and Find Full Text PDFVegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology.
View Article and Find Full Text PDFCrowd behaviour analysis is an emerging research area. Due to its novelty, a proper taxonomy to organise its different sub-tasks is still missing. This paper proposes a taxonomic organisation of existing works following a pipeline, where sub-problems in last stages benefit from the results in previous ones.
View Article and Find Full Text PDFDespite their interest and threat status, the number of whales in world's oceans remains highly uncertain. Whales detection is normally carried out from costly sighting surveys, acoustic surveys or through high-resolution images. Since deep convolutional neural networks (CNNs) are achieving great performance in several computer vision tasks, here we propose a robust and generalizable CNN-based system for automatically detecting and counting whales in satellite and aerial images based on open data and tools.
View Article and Find Full Text PDFSuccessive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes.
View Article and Find Full Text PDF