Thermal infrared camouflage aims to reduce the detectability of a target using thermal imaging devices. Given the typically high thermal emissivity in everyday environments, the thermal emissivity of the background environment must be considered. The conventional low-emissivity strategy for thermal camouflage is only effective for targets at extremely high temperatures (>350 °C), making it unsuitable for applications near room-to-medium-high temperature range (<350 °C).
View Article and Find Full Text PDFThis study reports the first attempt to characterize the quality, defects, and strain of as-grown monolayer transition metal dichalcogenide (TMDC)-based 2D materials through exciton anisotropy. A standard ellipsometric parameter (Ψ) to observe anisotropic exciton behavior in monolayer 2D materials is used. According to the strong exciton effect from phonon-electron coupling processes, the change in the exciton in the Van Hove singularity is sensitive to lattice distortions such as defects and strain.
View Article and Find Full Text PDFIn this paper, we demonstrate the first example of phonon-assisted hot luminescence (PAHL) emission from silicon (Si) spheres (diameter > 100nm) without using the plasmonic effect or quantum confinement effect. Instead, we excite the hot luminescence of Si by a strong thin-film-cavity-enhanced magnetic dipole resonance. The thin-film cavity (80 nm SiO/Ag) shows a strong co-enhancement with the magnetic dipole resonance of Si sphere (diameter = 120 nm).
View Article and Find Full Text PDFBiosens Bioelectron
March 2022
Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca.
View Article and Find Full Text PDFOptical inspection is a rapid and non-destructive method for characterizing the properties of two-dimensional (2D) materials. With the aid of optical inspection, in situ and scalable monitoring of the properties of 2D materials can be implemented industrially to advance the development and progress of 2D material-based devices toward mass production. This review discusses the optical inspection techniques that are available to characterize various 2D materials, including graphene, transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), group-III monochalcogenides, black phosphorus (BP), and group-IV monochalcogenides.
View Article and Find Full Text PDFThe localized surface plasmon resonance of plasmonic nanoparticles (NPs) can be coupled with a noble metal substrate (S) to induce a localized augmented electric field (E-field) concentrated at the NP-S gap. Herein, we analyzed the fundamental near-field properties of metal NPs on diverse substrates numerically (using the 3D finite-difference time-domain method) and experimentally [using surface-enhanced Raman scattering (SERS)]. We systematically examined the effects of plasmonic NPs on noble metals (Ag and Au), non-noble metals (Al, Ti, Cu, Fe, and Ni), semiconductors (Si and Ge), and dielectrics (TiO, ZnO, and SiO) as substrates.
View Article and Find Full Text PDFFluorescent nanodiamonds (FNDs) having nitrogen-vacancy (NV) centers have drawn much attention for their biocompatibility and stable optical properties. Nevertheless, the NV centers are located in the interior of the FNDs, and it has not been possible to increase the fluorescence intensity of FNDs efficiently using previously developed enhancement methods. In this paper, we present a simple nanocavity structure that enhances the fluorescence intensity of FNDs.
View Article and Find Full Text PDFIn this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347.
View Article and Find Full Text PDF