J Environ Sci Health A Tox Hazard Subst Environ Eng
May 2013
In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC).
View Article and Find Full Text PDFThe leaching behaviors of enrofloxacin (ENR), a fluoroquinolone group antibiotic, in three different standard soils, namely sandy, loamy sand and sandy loam were investigated according to OECD guideline 312. In addition, the effects of tenside, sodium dodecylbenzenesulfonate (DBS) on the mobility of ENR in two different soils were studied. The mobility of ENR in all three standard soils was very similar and was mostly (98%) concentrated on the top 0-5 cm segment of the soils at pH 5.
View Article and Find Full Text PDFA proof of concept for the simultaneous multi-parameter determination of three inflammation and sepsis parameters-TNFα, PCT and CRP-using a compact optical immunosensor is demonstrated. Harmonized assay conditions revealed standard curves with test midpoints (IC(50)) of 380 µg L(-1) for TNFα, 2300 µg L(-1) for PCT, and 2645 µg L(-1) for CRP.
View Article and Find Full Text PDFAntibiotic formulation effluents are well known for their difficult elimination by traditional bio-treatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study the effect of ozonation on the degradation of oxytetracycline (OTC) aqueous solution (100mgl(-1)) at different pH values (3, 7 and 11) was investigated. Ozone (11mgl(-1) corresponds the concentration of ozone in gas phase) was chosen considering its rapid reaction and decomposition rate.
View Article and Find Full Text PDF