Publications by authors named "Sigrist K"

CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels.

View Article and Find Full Text PDF

TAF4b is a subunit of the TFIID complex that is highly expressed in the ovary and testis and required for mouse fertility. TAF4b-deficient male mice undergo a complex series of developmental defects that result in the inability to maintain long-term spermatogenesis. To decipher the transcriptional mechanisms upon which TAF4b functions in spermatogenesis, we used two-hybrid screening to identify a novel TAF4b-interacting transcriptional cofactor, ZFP628.

View Article and Find Full Text PDF

Sucrose nonfermenting-related kinase (SNRK) is a member of the AMPK-related kinase family, and its physiological role in adipose energy homeostasis and inflammation remains unknown. We previously reported that SNRK is ubiquitously and abundantly expressed in both white adipose tissue (WAT) and brown adipose tissue (BAT), but SNRK expression diminishes in adipose tissue in obesity. In this study we report novel experimental findings from both animal models and human genetics.

View Article and Find Full Text PDF

Osteoclasts are specialized secretory cells of the myeloid lineage important for normal skeletal homeostasis as well as pathologic conditions of bone including osteoporosis, inflammatory arthritis and cancer metastasis. Differentiation of these multinucleated giant cells from precursors is controlled by the cytokine RANKL, which through its receptor RANK initiates a signaling cascade culminating in the activation of transcriptional regulators which induce the expression of the bone degradation machinery. The transcription factor nuclear factor of activated T-cells c1 (NFATc1) is the master regulator of this process and in its absence osteoclast differentiation is aborted both in vitro and in vivo.

View Article and Find Full Text PDF

Craniofacial anomalies (CFAs) are the most frequently occurring human congenital disease, and a major cause of infant mortality and childhood morbidity. Although CFAs seems to arise from a combination of genetic factors and environmental influences, the underlying gene defects and pathophysiological mechanisms for most CFAs are currently unknown. Here we reveal a role for the E3 ubiquitin ligase Wwp2 in regulating craniofacial patterning.

View Article and Find Full Text PDF

Formation and remodeling of the skeleton relies on precise temporal and spatial regulation of genes expressed in cartilage and bone cells. Debilitating diseases of the skeletal system occur when mutations arise that disrupt these intricate genetic regulatory programs. Here, we report that mice bearing parallel null mutations in the adapter proteins Schnurri2 (Shn2) and Schnurri3 (Shn3) exhibit defects in patterning of the axial skeleton during embryogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied a mouse model of ulcerative colitis caused by a lack of T-bet in the innate immune system, finding that most of these mice develop serious colon issues like dysplasia and cancer due to inflammation.
  • Dendritic cells are identified as key players in this inflammatory process that can lead to cancer, indicating their role as cellular effectors in promoting disease.
  • Restoring T-bet in dendritic cells effectively reduces inflammation and helps prevent cancer, suggesting that this mouse model can help researchers understand how inflammation may lead to colorectal cancer and evaluate potential treatments.
View Article and Find Full Text PDF

The antigen recognition interface formed by T helper precursors (Thps) and antigen-presenting cells (APCs), called the immunological synapse (IS), includes receptors and signaling molecules necessary for Thp activation and differentiation. We have recently shown that recruitment of the interferon-gamma receptor (IFNGR) into the IS correlates with the capacity of Thps to differentiate into Th1 effector cells, an event regulated by signaling through the functionally opposing receptor to interleukin-4 (IL4R). Here, we show that, similar to IFN-gamma ligation, TCR stimuli induce the translocation of signal transducer and activator of transcription 1 (STAT1) to IFNGR1-rich regions of the membrane.

View Article and Find Full Text PDF

Background: A T(H)1-specific transcription factor, T-box-containing protein expressed in T cells (T-bet), controls the production of both T(H)1 and T(H)2 cytokines in T(H) cell differentiation by means of distinct mechanisms. T-bet-deficient mice overproduce T(H)2 cytokines and have spontaneous airway inflammation.

Objectives: We tested whether T-bet overexpression could protect against the development or progression of asthma.

View Article and Find Full Text PDF

Osteoporosis results from an imbalance in skeletal remodeling that favors bone resorption over bone formation. Bone matrix is degraded by osteoclasts, which differentiate from myeloid precursors in response to the cytokine RANKL. To gain insight into the transcriptional regulation of bone resorption during growth and disease, we generated a conditional knockout of the transcription factor nuclear factor of activated T cells c1 (Nfatc1).

View Article and Find Full Text PDF

The c-fes proto-oncogene encodes a 92-kd protein tyrosine kinase whose expression is restricted largely to myeloid and endothelial cells in adult mammals. A 13.2-kilobase (kb) human c-fes genomic fragment was previously shown to contain cis-acting element(s) sufficient for a locus control function in bone marrow macrophages.

View Article and Find Full Text PDF

GATA6 belongs to a family of zinc finger transcription factors that play important roles in transducing nuclear events that regulate cellular differentiation and embryonic morphogenesis in vertebrate species. To examine the function of GATA6 during embryonic development, gene targeting was used to generate GATA6-deficient (GATA6(-/-)) ES cells and mice harboring a null mutation in GATA6. Differentiated embryoid bodies derived from GATA6(-/-) ES cells lack a covering layer of visceral endoderm and severely attenuate, or fail to express, genes encoding early and late endodermal markers, including HNF4, GATA4, alpha-fetoprotein (AFP), and HNF3beta.

View Article and Find Full Text PDF

gamma-Sarcoglycan is a transmembrane, dystrophin-associated protein expressed in skeletal and cardiac muscle. The murine gamma-sarcoglycan gene was disrupted using homologous recombination. Mice lacking gamma-sarcoglycan showed pronounced dystrophic muscle changes in early life.

View Article and Find Full Text PDF

Previous studies have suggested that the GATA4 transcription factor plays an important role in regulating mammalian cardiac development. In the studies described in this report we have used gene targeting to produce GATA4-deficient mice. Homozygous GATA4-deficient (GATA4-/-) mice died between 8.

View Article and Find Full Text PDF

We examined the effect of eosinophil major basic protein (MBP) on prostaglandin (PG) secretion from guinea pig tracheal epithelial (GPTE) cells. Primary cultures of GPTE cells were incubated with 10(-6) M MBP for up to 6 h and then stimulated with 10(-6) M bradykinin (BK). PGE2, 6-ketoprostaglandin F1 alpha (PGF1 alpha), PGF2 alpha, and thromboxane B2 (TxB2) concentrations in media were determined by enzyme-linked immunoabsorbent assay (EIA).

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is contained within and secreted by nerves and neuroepithelial bodies in the airway epithelium. To determine whether CGRP is mitogenic for airway epithelial cells, tracheal epithelial cells isolated from 26 guinea pigs were grown in primary culture for 2 days. Subconfluent cells were exposed to 10(-13) to 10(-9) M CGRP for 4 h and then returned to CGRP-free medium.

View Article and Find Full Text PDF

Inflammatory mediators promote the synthesis and secretion of prostaglandin (PG) mediators in airway epithelial cells. In this study, we examined the topographic and kinetic profile of PG secretion in canine tracheal epithelial cells harvested from the tracheal posterior membrane (PM) and those obtained from the immediately anterior cartilage-associated membrane (CM). Primary cultures of tracheal epithelial cells obtained from 23 disease-free dogs were grown to confluence in serum-enriched medium.

View Article and Find Full Text PDF