Changes in DNA methylation in specific coding or non-coding regions can influence development and potentially divergence in traits within species and groups. While the impact of epigenetic variation on developmental pathways associated with evolutionary divergence is the focus of intense investigation, few studies have looked at recently diverged systems. Phenotypic diversity between closely related populations of Arctic charr (Salvelinus alpinus), which diverged within the last 10,000 years, offers an interesting ecological model to address such effects.
View Article and Find Full Text PDFPhenotypic differences between closely related taxa or populations can arise through genetic variation or be environmentally induced, leading to altered transcription of genes during development. Comparative developmental studies of closely related species or variable populations within species can help to elucidate the molecular mechanisms related to evolutionary divergence and speciation. Studies of Arctic charr () and related salmonids have revealed considerable phenotypic variation among populations and in Arctic charr many cases of extensive variation within lakes (resource polymorphism) have been recorded.
View Article and Find Full Text PDFBackground: The developmental basis of craniofacial morphology hinges on interactions of numerous signalling systems. Extensive craniofacial variation in the polymorphic Arctic charr, a member of the salmonid family, from Lake Thingvallavatn (Iceland), offers opportunities to find and study such signalling pathways and their key regulators, thereby shedding light on the developmental pathways, and the genetics of trophic divergence.
Results: To identify genes involved in the craniofacial differences between benthic and limnetic Arctic charr, we used transcriptome data from different morphs, spanning early development, together with data on craniofacial expression patterns and skeletogenesis in model vertebrate species.
Background: The impressive diversity in the feeding apparatus often seen among related fish species clearly reflects differences in feeding modes and habitat utilization. Such variation can also be found within species. One example of such intraspecific diversity is the Arctic charr in Lake Thingvallavatn, where four distinct morphs coexist: two limnetic, with evenly protruding jaws, and two benthic, with subterminal lower jaws.
View Article and Find Full Text PDFThe epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells.
View Article and Find Full Text PDFBackground: Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic).
View Article and Find Full Text PDFMicro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC).
View Article and Find Full Text PDFBranching morphogenesis is a mechanism used by many species for organogenesis and tissue maintenance. Receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and the sprouty protein family are believed to be critical regulators of branching morphogenesis. The aim of this study was to analyze the expression of Sprouty-2 (SPRY2) in the mammary gland and study its role in branching morphogenesis.
View Article and Find Full Text PDFThe Drosophila nervous system is ideally suited to study glial cell development and function, because it harbors only relatively few glial cells, and nervous system development is very well conserved during evolution. In the past, enhancer trap studies provided tools allowing to study glial cells with a single-cell resolution and, moreover, disclosed a surprising molecular heterogeneity among the different glial cells. The peripheral nervous system in the embryo comprises only 12 glial cells in one hemisegment and thus offers a unique opportunity to decipher the mechanisms directing glial development.
View Article and Find Full Text PDFThe construction of a molecular clone of maedi-visna virus (MVV) expressing the enhanced green fluorescent protein (EGFP) is described. The egfp gene was inserted into the gene for dUTPase since it has been shown that dUTPase is dispensable for MVV replication both in vitro and in vivo. MVV-egfp is infectious and EGFP expression is stable over at least six passages.
View Article and Find Full Text PDFA complex nervous system comprises two distinct cell types, neurons and glial cells, whose development, differentiation and function is mutually interdependent. Many studies contributed to uncovering the basic mechanisms determining neuronal and glial fate and we are progressing enormously towards an understanding of how neurons interconnect to form intricate neuronal networks. However, the mechanisms used to couple neuronal and glial development remain largely obscure.
View Article and Find Full Text PDFThe formation of a complex nervous system requires the intricate interaction of neurons and glial cells. Glial cells generally migrate over long distances before they initiate their differentiation, which leads to wrapping and insulation of axonal processes. The molecular pathways coordinating the switch from glial migration to glial differentiation are largely unknown.
View Article and Find Full Text PDFMaedi-visna virus (MVV) is a lentivirus of sheep sharing several key features with the primate lentiviruses. The virus causes slowly progressive diseases, mainly in the lungs and the central nervous system of sheep. Here, we investigate the molecular basis for the differential growth phenotypes of two MVV isolates.
View Article and Find Full Text PDF