Publications by authors named "Sigrid S G Dupan"

The limb position effect is a multi-faceted problem, associated with decreased upper-limb prosthesis control acuity following a change in arm position. Factors contributing to this problem can arise from distinct environmental or physiological sources. Despite their differences in origin, the effect of each factor manifests similarly as increased input data variability.

View Article and Find Full Text PDF

The objective of this study was to assess the impact of delayed feedback training on the retention of novel myoelectric skills, and to demonstrate the use of this training approach in the home environment.We trained limb-intact participants to use a motor learning-based upper-limb prosthesis control scheme called abstract decoding. A delayed feedback paradigm intended to prevent within-trial adaptation and to facilitate motor learning was used.

View Article and Find Full Text PDF

Myoelectric prosthesis users typically do not receive immediate feedback from their device. They must be able to consistently produce distinct muscle activations in the absence of augmented feedback. In previous experiments, abstract decoding has provided real-time visual feedback for closed loop control.

View Article and Find Full Text PDF

The incorporation of sensory feedback in prosthetics can lead to a range of benefits, such as improved hand control, increased prosthesis embodiment, and the reduction of phantom limb pain. However, the creation of reliable sensory feedback is complicated by the temporal modulation of the nervous system. Sensory fibres in the hand are primed to react to changing conditions, firing when discrete mechanical events occur.

View Article and Find Full Text PDF

The unknown composition of residual muscles surrounding the stump of an amputee makes optimal electrode placement challenging. This often causes the experimental set-up and calibration of upper-limb prostheses to be time consuming. In this work, we propose the use of existing dimensionality reduction techniques, typically used for muscle synergy analysis, to provide meaningful real-time functional information of the residual muscles during the calibration period.

View Article and Find Full Text PDF

Myoelectric prostheses are commonly controlled by surface EMG. Many control algorithms, including the user learning-based control paradigm abstract control, benefit from independent control signals. Measuring at the surface of the skin reduces the signal independence through cross talk.

View Article and Find Full Text PDF

Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks.

View Article and Find Full Text PDF