A remaining expression of the transcription factor Wilms tumor 1 (WT1) after cytotoxic chemotherapy indicates remaining leukemic clones in patients. We determined the regulation and relevance of WT1 in leukemic cells exposed to replicative stress and DNA damage. To induce these conditions, we used the clinically relevant chemotherapeutics hydroxyurea and doxorubicin.
View Article and Find Full Text PDFSignal transducers and activators of transcription (STATs) are latent, cytoplasmic transcription factors. Janus kinases (JAKs) and activated CDC42-associated kinase-1 (ACK1/TNK2) catalyse the phosphorylation of STAT1 and the expression of its target genes. Here we demonstrate that catalytically active ACK1 promotes the phosphorylation and nuclear accumulation of STAT1 in transformed kidney cells.
View Article and Find Full Text PDFHead and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignant neoplasm and more than 50% of patients succumb to this disease. HNSCCs are characterized by therapy resistance, which relies on the overexpression of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts improvement of long-term survival, novel multi-targeting strategies triggering cancer cell death are urgently required.
View Article and Find Full Text PDFCytokines such as interferons (IFNs) activate signal transducers and activators of transcription (STATs) via phosphorylation. Histone deacetylases (HDACs) and the histone acetyltransferase (HAT) CBP dynamically regulate STAT1 acetylation. Here we show that acetylation of STAT1 counteracts IFN-induced STAT1 phosphorylation, nuclear translocation, DNA binding, and target gene expression.
View Article and Find Full Text PDFThe chromosomal translocation products AML1-ETO and PML-RARalpha contribute to the pathogenesis of leukemias. Here, we demonstrate that both AML1-ETO and PML-RARalpha are degraded by the ubiquitin-proteasome system and that their turnover critically depends on the E2-conjugase UbcH8 and the E3-ligase SIAH-1. Contrary to its role in HDAC2 degradation, the E3-ligase RLIM does not target AML1-ETO and PML-RARalpha for ubiquitin-dependent elimination.
View Article and Find Full Text PDF