The Blood Profiling Atlas in Cancer (BLOODPAC) Consortium is a collaborative effort involving stakeholders from the public, industry, academia, and regulatory agencies focused on developing shared best practices on liquid biopsy. This report describes the results from the JFDI (Just Freaking Do It) study, a BLOODPAC initiative to develop standards on the use of contrived materials mimicking cell-free circulating tumor DNA, to comparatively evaluate clinical laboratory testing procedures. Nine independent laboratories tested the concordance, sensitivity, and specificity of commercially available contrived materials with known variant-allele frequencies (VAFs) ranging from 0.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple classes of genes have been identified in patients with MDS with some patients harboring more than 1 mutation. Interestingly, double mutations tend to occur in different classes rather than the same class of genes, as exemplified by frequent cooccurring mutations in the transcription factor RUNX1 and the splicing factor SRSF2.
View Article and Find Full Text PDFis a genus of siboglinid annelids in which the females live on dead vertebrate bones on the seafloor. These females have a posterior end that lies within the bone and contains the ovarian tissue, as well as the "roots" involved with bone degradation and nutrition. The males are microscopic and live as "harems" in the lumen of the gelatinous tube that surrounds the female trunk, well away from the ovary.
View Article and Find Full Text PDFWe report the presence of Mesorhizobium, a genus best known for its nitrogen-fixing symbiosis with terrestrial legumes, associated with the marine polychaete Meganerilla bactericola (Annelida: Nerillidae). Abundant epibionts were previously described as coating the exterior of M. bactericola, which is found within the anoxic sulfide-oxidizing microbial mats of the Santa Barbara Basin, California, USA.
View Article and Find Full Text PDFOsedax are gutless siboglinid worms that thrive on vertebrate bones lying on the ocean floor, mainly those of whales. The posterior body of female Osedax penetrates into the bone forming extensions known as 'roots', which host heterotrophic symbiotic bacteria in bacteriocytes beneath the epidermis. The Osedax root epithelium presumably absorbs bone collagen and/or lipids, which are metabolized by the symbiotic bacteria that in turn serve for Osedax's nutrition.
View Article and Find Full Text PDFThe polychaete family Siboglinidae, which is currently construed as comprising the Frenulata, Monilifera (composed of Sclerolinum), Vestimentifera, and Osedax, has become known for its specialized symbiont-housing organ called the trophosome. This organ replaced the digestive system of the worms and is located in the elongated trunk region in Frenulata, Sclerolinum, and Vestimentifera. Currently two types of trophosomes have been described: in the taxa Frenulata and Sclerolinum the bacteriocytes originate from endoderm, and in Vestimentifera they originate from mesoderm.
View Article and Find Full Text PDFThe symbiotic polychaetes of the genus Osedax living on the bones of whale carcasses have become known as bone-eating worms. It is believed that whale bones are the source of nutrition for those gutless worms and that fatty acids are produced by their symbionts and transferred to the host. However, the symbionts are of the heterotrophic group Oceanospirillales and as such are not able to synthesize organic carbon de novo.
View Article and Find Full Text PDFZoothamnium niveum (Ciliophora, Oligohymenophora) is a giant, colonial marine ciliate from sulphide-rich, shallow-water habitats, obligatorily associated with the ectosymbiotic, chemoautotrophic, sulphide-oxidizing bacterium 'Candidatus Thiobios zoothamnicoli'. The aims of this study were to characterize the natural habitat and investigate growth, reproduction, survival and maintenance of the symbiosis from Corsica, France (Mediterranean Sea) using a flow-through respirometer providing stable chemical conditions. We were able to successfully cultivate the Z.
View Article and Find Full Text PDF