Cycloadditions are widely accepted as a group of reactions that rapidly generate molecular complexity. Being highly atom economic and often predictable, these reactions can generate up to four stereogenic centers and two C-C (or C-X) bonds in one reaction step. During the last two decades, asymmetric aminocatalysis has shown to be a successful strategy for controlling stereoselectivity and enabling reactivity of cycloaddition reactions.
View Article and Find Full Text PDFA novel cascade reaction initiated by an enantioselective aminocatalysed 1,3-dipolar [6+4] cycloaddition between catalytically generated trienamines and 3-oxidopyridinium betaines is presented. The [6+4] cycloadduct spontaneously undergoes an intramolecular enamine-mediated aldol, hydrolysis, and E1cb sequence, which ultimately affords a chiral hexahydroazulene framework. In this process, three new C-C bonds and three new stereocenters are formed, enabled by a formal unfolding of the pyridine moiety from the dipolar reagent.
View Article and Find Full Text PDF