Publications by authors named "Signe Helbo"

Introduction/purpose: Fat metabolism and muscle adaptation was investigated in six older trained men (age, 61 ± 4 yr; V˙O2max, 48 ± 2 mL·kg·min) after repeated prolonged exercise).

Methods: A distance of 2706 km (1681 miles) cycling was performed over 14 d, and a blood sample and a muscle biopsy were obtained at rest after an overnight fast before and 30 h after the completion of the cycling. V˙O2max and maximal fat oxidation were measured using incremental exercise tests.

View Article and Find Full Text PDF

Differences between species in the oxygen (O2) affinity (P50) of myoglobin (Mb) may serve to fine tune O2 supply to cardiac and skeletal muscle in ectotherms. In support of this view, it has been shown that fish Mb O2 affinities differ between species when measured at the same temperature, but are in fact similar when adjusted for in vivo muscle temperatures, most likely to maintain intracellular O2 delivery in species adapted to different environments. It is unknown whether similar adaptations exist in the O2 affinity of Mb from reptiles, despite this group of ectothermic vertebrates displaying great variation in the tolerance to both temperature and hypoxia.

View Article and Find Full Text PDF

We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor.

View Article and Find Full Text PDF

The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.

View Article and Find Full Text PDF

The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M.

View Article and Find Full Text PDF

The discovery that cysteine (Cys) S-nitrosation of trout myoglobin (Mb) increases heme O2 affinity has revealed a novel allosteric effect that may promote hypoxia-induced nitric oxide (NO) delivery in the trout heart and improve myocardial efficiency. To better understand this allosteric effect, we investigated the functional effects and structural origin of S-nitrosation in selected fish Mbs differing by content and position of reactive cysteine (Cys) residues. The Mbs from the Atlantic salmon and the yellowfin tuna, containing two and one reactive Cys, respectively, were S-nitrosated in vitro by reaction with Cys-NO to generate Mb-SNO to a similar yield (∼0.

View Article and Find Full Text PDF

Recent years have witnessed a new round of research on one of the most studied proteins - myoglobin (Mb), the oxygen (O2) carrier of skeletal and heart muscle. Two major discoveries have stimulated research in this field: 1) that Mb has additional protecting functions, such as the regulation of in vivo levels of the signaling molecule nitric oxide (NO) by scavenging and generating NO during normoxia and hypoxia, respectively; and 2) that Mb in vertebrates (particularly fish) is expressed as tissue-specific isoforms in other tissues than heart and skeletal muscle, such as vessel endothelium, liver and brain, as found in cyprinid fish. Furthermore, Mb has also been found to protect against oxidative stress after hypoxia and reoxygenation and to undergo allosteric, O2-linked S-nitrosation, as in rainbow trout.

View Article and Find Full Text PDF

Myoglobin (Mb) plays a well-established role in facilitated O2 diffusion to sustain mitochondrial O2 consumption during hypoxia in the mammalian heart. To better understand the function of Mb in the fish heart, we have measured the effects of adding 20% carbon monoxide (CO), which inhibits Mb function, compared to inert 20% N2 on the O2 consumption and twitch force in hypoxic rainbow trout (Oncorhynchus mykiss) ventricle ring preparations. Results showed that O2 consumption was significantly reduced upon addition of CO, whereas twitch force was not affected.

View Article and Find Full Text PDF

Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration.

View Article and Find Full Text PDF

Rainbow trout myoglobin (Mb) is characterized by an unusually low affinity for oxygen, having a P(50) of 4.92±0.29 mm Hg at 25 °C which is the highest ever reported for any vertebrate Mb at the same temperature (Helbo and Fago, (2011) Am.

View Article and Find Full Text PDF

Hydrogen sulfide (H(2)S), nitric oxide (NO) and nitrite (NO(2)(-)) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting of the Society for Experimental Biology in 2011 in Glasgow. It also highlights the need and potential for a comparative approach of study and collaborative effort to identify potential link(s) between the signaling pathways involving NO, nitrite and H(2)S in the whole-body responses to hypoxia.

View Article and Find Full Text PDF

Because of a recent whole genome duplication, the hypoxia-tolerant common carp and goldfish are the only vertebrates known to possess two myoglobin (Mb) paralogs. One of these, Mb1, occurs in oxidative muscle but also in several other tissues, including capillary endothelial cells, whereas the other, Mb2, is a unique isoform specific to brain neurons. To help understand the functional roles of these diverged isoforms in the tolerance to severe hypoxia in the carp, we have compared their O(2) equilibria, carbon monoxide (CO) and O(2) binding kinetics, thiol S-nitrosation, nitrite reductase activities, and peroxidase activities.

View Article and Find Full Text PDF

Myoglobin (Mb) serves in the facilitated diffusion and storage of O₂ in heart and skeletal muscle, where it also regulates O₂ consumption via nitric oxide (NO) scavenging or generation. S-nitrosation at reactive cysteines may generate S-nitroso Mb (Mb-SNO) and contribute further to NO homeostasis. In being a monomer, Mb is commonly believed to lack allosteric control of heme reactivity.

View Article and Find Full Text PDF

The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitrite on the O(2) consumption rate and isometric twitch force development in electrically paced ventricular preparations during hypoxia, and measured O(2) affinity and nitrite reductase activity of the purified heart Mbs of both species. Upon hypoxia (9% O(2)), O(2) consumption and developed force decreased in both trout and goldfish myocardium, with trout showing a significant increase in the O(2) utilization efficiency, i.

View Article and Find Full Text PDF