Publications by authors named "Signe Engkjaer Christensen"

Studies have shown that cancellous bone is relatively preserved in primary hyperparathyroidism (PHPT), whereas bone loss is seen in cortical bone. Familial hypocalciuric hypercalcemia (FHH) patients seem to preserve bone mineral in spite of hypercalcemia and often elevated plasma parathyroid hormone (PTH). The objective of this study was to compare total and regional forearm bone mineral density (BMD) in patients with PHPT and FHH and to examine if differences can be used to separate the two disorders.

View Article and Find Full Text PDF

Objectives: Bone metabolism is only superficially described in familiar hypocalciuric hypercalcaemia (FHH). We describe and compare biochemical and osteodensitometric variables in FHH and primary hyperparathyroidism (PHPT) and assess whether they can improve the diagnostic discrimination between the groups.

Design: Cross-sectional.

View Article and Find Full Text PDF

Introduction: Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign, inherited condition caused by inactivating mutations in the calcium-sensing receptor (CASR) gene. Both FHH and primary hyperparathyroidism (PHPT) are characterized by elevated P-calcium, normal or elevated plasma-parathyroid hormone (P-PTH), and typically normal renal function. In PHPT, vitamin D metabolism is typically characterized by low plasma levels of 25-hydroxyvitamin D (25OHD), and high plasma levels of 1,25-dihydroxyvitamin D (1,25(OH)(2)D).

View Article and Find Full Text PDF

Background: Familial hypocalciuric hypercalcaemia (FHH) must be differentiated from primary hyperparathyroidism (PHPT) because prognosis and treatment differ. In daily practice this discrimination is often based on the renal calcium excretion or the calcium/creatinine clearance ratio (CCCR). However, the diagnostic performance of these variables is poorly documented.

View Article and Find Full Text PDF