The expansion of the textile industry and improvements in living standards have led to increased cotton textile production, resulting in a rise in textile waste, with cotton accounting for 24% of total textile waste. Effective waste management through recycling and reuse is crucial to reducing global waste production. Nanocellulose has diverse applications in environmental, geotechnical, food packaging, and biomedical engineering areas.
View Article and Find Full Text PDFStem cell transplantation provides a promising approach for addressing inflammation and functional disorders. Nonetheless, the viability of these transplanted cells diminishes significantly within pathological environments, limiting their therapeutic potential. Moreover, the non-invasive tracking of these cells in vivo remains a considerable challenge, hampering the assessment of their therapeutic efficacy.
View Article and Find Full Text PDFIntra-articular trauma typically initiates the overgeneration of reactive oxidative species (ROS), leading to post-traumatic osteoarthritis and cartilage degeneration. Xanthan gum (XG), a branched polysaccharide, has shown its potential in many biomedical fields, but some of its inherent properties, including undesirable viscosity and poor mechanical stability, limit its application in 3D printed scaffolds for cartilage regeneration. In this project, we developed 3D bioprinted XG hydrogels by modifying XG with methacrylic (MA) groups for post-traumatic cartilage therapy.
View Article and Find Full Text PDFSecondary phosphines are important building blocks in organic chemistry as their reactive P-H bond enables construction of more elaborate molecules. In particular, they can be used to construct tertiary phosphines that have widespread applications as organocatalysts, and as ligands in metal-complex catalysis. We report here a practical synthesis of the bulky secondary phosphine synthon 2,2,6,6-tetramethylphosphinane (TMPhos).
View Article and Find Full Text PDFLignin is a nontoxic and biocompatible biopolymer with many promising characteristics, including a high tensile strength and antioxidant properties. This natural polymer can be processed through several chemical methods and modified into lignin nanomaterials for potential biomedical applications. This review summarizes the latest developments in nanolignin (NL)-based biomaterials for cancer therapy; various NL applications related to cancer therapy are considered, including drug and gene delivery, biosensing, bioimaging, and tissue engineering.
View Article and Find Full Text PDFFlexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable.
View Article and Find Full Text PDFThere has been increasing exploration of the development and production of biodegradable polymers in response to issues with petrol-based polymers and their impact on the environment. Here we report a new approach to synthesize a natural nanogel from lignin and nanocellulose. First, lignin nanobeads were synthesized by a solvent-shifting method, which showed a spherical shape with a diameter of 159.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is common musculoskeletal disorders associated with overgeneration of free radicals, and it causes joint pain, inflammation, and cartilage degradation. Lignin as a natural antioxidant biopolymer has shown its great potential for biomedical applications. In this work, we developed a series of lignin-based nanofibers as antioxidative scaffolds for cartilage tissue engineering.
View Article and Find Full Text PDFLignin is a versatile biomass that possesses many different desirable properties such as antioxidant, antibacterial, anti-UV, and good biocompatibility. Natural lignin can be processed through several chemical processes. The processed lignin can be modified into functionalized lignin through chemical modifications to develop and enhance biomaterials.
View Article and Find Full Text PDFThe direct tracking of cells using fluorescent dyes is a constant challenge in cell therapy due to aggregation-induced quenching (ACQ) effect and biocompatibility issues. Here, we demonstrate the development of a biocompatible and highly efficient aggregation-induced emission (AIE)-active pseudorotaxane luminogen based on tetraphenylethene conjugated poly(ethylene glycol) (TPE-PEG) (guest) and α-cyclodextrin (α-CD) (host). It is capable of showing significant fluorescent emission enhancement at the 400-600 nm range when excited at 388 nm, without increasing the concentration of AIE compound.
View Article and Find Full Text PDFA new drug concentration meter is developed. In vivo drug release can be monitored precisely via a self-indicating drug delivery system consisting of a new aggregation-induced emission thermoresponsive hydrogel. By taking the advantage of a self-indicating system, one can easily detect the depletion of drugs, and reinject to maintain a dosage in the optimal therapeutic window.
View Article and Find Full Text PDFNanotechnology has gained much attention over the last decades, as it offers unique opportunities for the advancement of the next generation of sensing tools. Point-of-care (POC) devices for the selective detection of biomolecules using engineered nanoparticles have become a main research thrust in the diagnostic field. This review presents an overview on how the POC-associated nanotechnology, currently applied for the identification of nucleic acids, proteins and antibodies, might be further exploited for the detection of infectious pathogens: although still premature, future integrations of nanoparticles with biological markers that target specific microorganisms will enable timely therapeutic intervention against life-threatening infectious diseases.
View Article and Find Full Text PDF