Publications by authors named "Sigel R"

Single-molecule Förster Resonance Energy Transfer (smFRET) excels in studying dynamic biomolecules by allowing precise observation of their conformational changes over time. To monitor RNA dynamics with smFRET, we developed a method to covalently label RNAs at their termini with a FRET pair of fluorophores. This direct end-labeling strategy targets the 5'-phosphate by carbodiimide (EDC)/N-hydroxysuccinimide (NHS) activation and the 3'-ribose by periodate oxidation, which can be adapted to other RNAs regardless of their size and sequence to study them independently of artificial modifications.

View Article and Find Full Text PDF

The btuB riboswitch is a regulatory RNA sequence controlling gene expression of the outer membrane B transport protein BtuB by specifically binding coenzyme B (AdoCbl) as its natural ligand. The B sensing riboswitch class is known to accept various B derivatives, leading to a division into two riboswitch subclasses, dependent on the size of the apical ligand. Here we focus on the role of side chains b and e on affinity and proper recognition, i.

View Article and Find Full Text PDF

The functional diversity of RNAs is encoded in their innate conformational heterogeneity. The combination of single-molecule spectroscopy and computational modeling offers new attractive opportunities to map structural transitions within nucleic acid ensembles. Here, we describe a framework to harmonize single-molecule Förster resonance energy transfer (FRET) measurements with molecular dynamics simulations and de novo structure prediction.

View Article and Find Full Text PDF

RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes based on the ribozymes' activity are often unknown. Here, we present the discovery of a subgroup of minimal HDV-like ribozymes, which reside 3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature tRNA transcripts.

View Article and Find Full Text PDF

Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g.

View Article and Find Full Text PDF

RNA splicing, the removal of introns and ligation of exons, is a crucial process during mRNA maturation. Group II introns are large ribozymes that self-catalyze their splicing, as well as their transposition. They are living fossils of spliceosomal introns and eukaryotic retroelements.

View Article and Find Full Text PDF

Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before.

View Article and Find Full Text PDF

To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC.

View Article and Find Full Text PDF

Riboswitches are structural elements of mRNA involved in the regulation of gene expression by responding to specific cellular metabolites. To fulfil their regulatory function, riboswitches prefold into an active state, the so-called binding competent form, that guarantees metabolite binding and allows a consecutive refolding of the RNA. Here, we describe the folding pathway to the binding competent form as well as the ligand free structure of the moaA riboswitch of E.

View Article and Find Full Text PDF

The analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a challenge for both experts and machines. We propose a robust, expert-level quality deep learning-based deconvolution algorithm for 1D experimental NMR spectra.

View Article and Find Full Text PDF

For light propagation in a layered refractive index profile, critical conditions occur when the wave vector perpendicular to the layering becomes zero. Such conditions can occur in a total reflection geometry. Conventional transfer matrix methods become singular, and geometrical optics concepts break down at critical conditions.

View Article and Find Full Text PDF

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful ability to infer quantitative kinetic information from smFRET data is, however, complicated by experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a systematic comparison is lacking.

View Article and Find Full Text PDF

The complexation of Mg with adenosine 5'-triphosphate (ATP) is omnipresent in biochemical energy conversion, but is difficult to interrogate directly. Here we use the spin- β-emitter Mg to study Mg -ATP complexation in 1-ethyl-3-methylimidazolium acetate (EMIM-Ac) solutions using β-radiation-detected nuclear magnetic resonance (β-NMR). We demonstrate that (nuclear) spin-polarized Mg, following ion-implantation from an accelerator beamline into EMIM-Ac, binds to ATP within its radioactive lifetime before depolarizing.

View Article and Find Full Text PDF

Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds.

View Article and Find Full Text PDF

Fast and efficient site-specific labeling of long RNAs is one of the main bottlenecks limiting distance measurements by means of Förster resonance energy transfer (FRET) or electron paramagnetic resonance (EPR) spectroscopy. Here, we present an optimized protocol for dual end-labeling with different fluorophores at the same time meeting the restrictions of highly labile and degradation-sensitive RNAs. We describe in detail the dual-labeling of a catalytically active wild-type group II intron as a typical representative of long functional RNAs.

View Article and Find Full Text PDF

Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy.

View Article and Find Full Text PDF

Summary: Quantitative interpretation of single-molecule FRET experiments requires a model of the dye dynamics to link experimental energy transfer efficiencies to distances between atom positions. We have developed FRETraj, a Python module to predict FRET distributions based on accessible-contact volumes (ACV) and simulated photon statistics. FRETraj helps to identify optimal fluorophore positions on a biomolecule of interest by rapidly evaluating donor-acceptor distances.

View Article and Find Full Text PDF

Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery.

View Article and Find Full Text PDF

We coupled SPR imaging (SPRi) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) to identify new potential RNA binders. Here, we improve this powerful method, especially by optimizing the proteolytic digestion (type of reducing agent, its concentration, and incubation time), to work with complex mixtures, specifically a lysate of the rough mitochondrial fraction from yeast. The advantages of this hyphenated method compared to column-based or separate analyses are (i) rapid and direct visual readout from the SPRi array, (ii) possibility of high-throughput analysis of different interactions in parallel, (iii) high sensitivity, and (iv) no sample loss or contamination due to elution or micro-recovery procedures.

View Article and Find Full Text PDF

Imaging fluorescently labeled biomolecules on a single-molecule level is a well-established technique to follow intra- and intermolecular processes in time, usually hidden in the ensemble average. The classical approach comprises surface immobilization of the molecule of interest, which increases the risk of restricting the natural behavior due to surface interactions. Encapsulation of such biomolecules into surface-tethered phospholipid vesicles enables to follow one molecule at a time, freely diffusing and without disturbing surface interactions.

View Article and Find Full Text PDF

The fidelity of group II intron self-splicing and retrohoming relies on long-range tertiary interactions between the intron and its flanking exons. By single-molecule FRET, we explore the binding kinetics of the most important, structurally conserved contact, the exon and intron binding site 1 (EBS1/IBS1). A comparison of RNA-RNA and RNA-DNA hybrid contacts identifies transient metal ion binding as a major source of kinetic heterogeneity which typically appears in the form of degenerate FRET states.

View Article and Find Full Text PDF

Labeling of large RNAs with reporting entities, e.g., fluorophores, has significant impact on RNA studies in vitro and in vivo.

View Article and Find Full Text PDF

Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-Hg-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved structures in dynamic equilibrium.

View Article and Find Full Text PDF

Exploring the spatiotemporal dynamics of biomolecules on a single-molecule level requires innovative ways to make them spectroscopically visible. Fluorescence resonance energy transfer (FRET) uses a pair of organic dyes as reporters to measure distances along a predefined biomolecular reaction coordinate. For this nanoscopic ruler to work, the fluorescent labels need to be coupled onto the molecule of interest in a bioorthogonal and site-selective manner.

View Article and Find Full Text PDF