Publications by authors named "Sigel H"

Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds.

View Article and Find Full Text PDF

Background: Clinical data regarding the association between the left atrial function index (LAFI) and outcome in patients undergoing transcatheter aortic valve replacement (TAVR) are limited.

Objectives: We aimed to investigate the association between the left atrial function index (LAFI) and outcome in patients undergoing TAVR.

Methods: In this retrospective multicenter study, we assessed baseline LAFI in 733 patients undergoing TAVR for severe aortic stenosis in two German high-volume centers between 2008 and 2019.

View Article and Find Full Text PDF

Lead is widely distributed in the environment; it is known to mankind for thousands of years and its toxicity is nowadays (again) well recognized, though on the molecular level only partly understood. One of the reasons for this shortcoming is that the coordination chemistry of the biologically important lead(II) is complicated due to the various coordination numbers it can adopt (CN = 4 to 10) as well as by the 6s2 electron lone pair which, with CN = 4, can shield one side of the Pb2+ coordination sphere. The chapter focuses on the properties of Pb2+ complexes formed with nucleotides and their constituents and derivatives.

View Article and Find Full Text PDF

Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca.

View Article and Find Full Text PDF

Aromatic-ring stacking is pronounced among the noncovalent interactions occurring in biosystems and therefore some pertinent features regarding nucleobase residues are summarized. Self-stacking decreases in the series adenine > guanine > hypoxanthine > cytosine ~ uracil. This contrasts with the stability of binary (phen)(N) adducts formed by 1,10-phenanthroline (phen) and a nucleobase residue (N), which is largely independent of the type of purine residue involved, including (N1)H-deprotonated guanine.

View Article and Find Full Text PDF

The intrinsic acid-base properties of the hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1∙G2∙G3∙C4∙C5∙T6)=(HNPP)⁵⁻] have been determined by ¹H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single-strand conditions (i.e.

View Article and Find Full Text PDF

Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups).

View Article and Find Full Text PDF

The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2)(PE)(±), where PE(2-)=9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-)), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-)), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-)), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-)=PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3)) and 25°; the corresponding results for the other ANPs were taken from our earlier work.

View Article and Find Full Text PDF

Adenosine (Ado) can accept three protons, at N1, N3, and N7, to give H(3) (Ado)(3+) , and thus has three macro acidity constants. Unfortunately, these constants do not reflect the real basicity of the N sites due to internal repulsions, for example, between (N1)H(+) and (N7)H(+). However, these macroconstants are still needed for the evaluations and the first two are taken from our own earlier work, that is, pK(H)(H(3))((Ado)) = -4.

View Article and Find Full Text PDF

With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%.

View Article and Find Full Text PDF

The acidity constants of 3-fold protonated 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine, H(3)(PME2AP)(+), and the stability constants of the M(H;PME2AP)(+) and M(PME2AP) complexes with M(2+) = Ca(2+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) have been determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO(3)). It is concluded that in the M(H;PME2AP)(+) species, the proton is at the phosphonate group and the metal ion at N7 of the purine residue.

View Article and Find Full Text PDF

The three-dimensional architecture and function of nucleic acids strongly depend on the presence of metal ions, among other factors. Given the negative charge of the phosphate-sugar backbone, positively charged species, mostly metal ions, are necessary for compensation. However, these ions also allow and induce folding of complicated RNA structures.

View Article and Find Full Text PDF

The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review.

View Article and Find Full Text PDF

5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers.

View Article and Find Full Text PDF

The stability constants of the mixed-ligand complexes formed between Cu(Arm)(2+), where Arm= 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA) and 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) (both also abbreviated as PA(2-)) were determined by potentiometric pH titrations in aqueous solution (25 ( degrees )C; I = 0.1 M, NaNO(3)). All four ternary Cu(Arm)(PA) complexes are considerably more stable than corresponding Cu(Arm)(R-PO(3)) species, where R-PO(3) (2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes.

View Article and Find Full Text PDF

The stability constants of the 1:1 complexes formed between methylphosphonylphosphate (MePP(3-)), CH(3)P(O)(-) (2)-O-PO3(2-), and Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), or Cd(2+) (M(2+)) were determined by potentiometric pH titration in aqueous solution (25 degrees C; l = 0.1 M, NaNO(3)). Monoprotonated M(H;MePP) complexes play only a minor role.

View Article and Find Full Text PDF

The acidity constants of the twofold protonated acyclic nucleotide analogue 9-[2-(phosphonomethoxy)- ethyl]-8-azaadenine, H(2)(9,8aPMEA)(+/-), as well as the stability constants of the M(H;9,8aPMEA)(+) and M(9,8aPMEA) complexes with the metal ions M(2+) =Ni(2+), Cu(2+) or Zn(2+), have been determined by potentiometric pH titrations in aqueous solution at I=0.1 M (NaNO(3)) and 25. The result for the release of the first proton from H(2)(9,8aPMEA)(+) (pK(a)= 2.

View Article and Find Full Text PDF

The acidity constants of the (N7)H(+) sites of inosylyl(3'-->5')inosine (IpI(-)) were estimated and those of its (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Co(2+), Ni(2+), Zn(2+), or Cd(2+) (= M(2+)) and (IpI - H)(2-) and, in the case of Mg(2+), also of (IpI - 2H)(3-).

View Article and Find Full Text PDF