Publications by authors named "Sigal Weiss"

Background: Inflammatory bowel disease (IBD) is characterized by increased lymphocytic infiltrate to the lamina propria (LP) and upregulation of inflammatory chemokines and receptors. CXCL12 is a constitutive chemokine involved in lung, brain, and joint inflammation. We hypothesized that CXCL12 and its receptor, CXCR4, would have a constitutive and inflammatory role in the gut.

View Article and Find Full Text PDF

Peroxisome proliferator activator receptor (PPAR) ligands prevent liver fibrosis, while the role of all-trans retinoic acid (ATRA) and its metabolite 9-cis retinoic acid (9-cis RA) is less clear. We have investigated the ability of the combination of PPAR gamma ligand rosiglitazone (RSG) and of ATRA to prevent liver fibrosis. In vivo treatment with RSG or ATRA reduced fibrotic nodules, spleen weight, and hydroxyproline levels in rat model of thioacetamide-induced liver fibrosis.

View Article and Find Full Text PDF

Background And Aim: It has been shown in previous studies that hypothyroidism prevents the development of liver fibrosis in bile duct ligated rats and in rats chronically treated with thioacetamide (TAA). In recent years, regression of liver fibrosis (occurring spontaneously or during treatment) has been demonstrated in rodent models such as bile duct ligation and CCl(4) administration. Therefore, in the present study, the potential therapeutic effect of hypothyroidism on liver fibrosis was investigated.

View Article and Find Full Text PDF

Background And Aim: Curcumin, the major polyphenolic compound in turmeric, has been shown to attenuate hepatic damage in several animal models of liver injury. The aim of the present study was to examine the efficacy of curcumin in preventing thioacetamide-induced cirrhosis and to unravel the mechanism of curcumin's effect on hepatic fibrosis in rats.

Methods: Liver cirrhosis was induced by thioacetamide (TAA; 200 mg/kg, i.

View Article and Find Full Text PDF

A mutation in the POU4F3 gene (BRN-3.1, BRN3C) is responsible for DFNA15 (MIM 602459), autosomal-dominant nonsyndromic hearing loss. POU4F3 is a member of the POU family of transcription factors and is essential for inner-ear hair cell maintenance.

View Article and Find Full Text PDF