Publications by authors named "Sigal Ben-Yehuda"

Article Synopsis
  • Conjugation-mediated DNA delivery is a key way antibiotic resistance spreads among bacteria, but the details of how this process works are not well understood.
  • The pLS20 plasmid, found in Bacillus species, uniquely requires fluid environments and induces multicellular clustering to enhance DNA transfer.
  • This study found that the pLS20 plasmid’s gene expression relies on the presence of bacterial flagella, connecting motility with the activation of conjugation during active movement, potentially spreading the plasmid to new areas.
View Article and Find Full Text PDF

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions.

View Article and Find Full Text PDF

Bacterial spores can preserve cellular dormancy for years, but still hold the remarkable ability to revive and recommence life. This cellular awakening begins with a rapid and irreversible event termed germination; however, the metabolic determinants required for its success have been hardly explored. Here, we show that at the onset of the process of sporulation, the metabolic enzyme RocG catabolizes glutamate, facilitating ATP production in the spore progenitor cell, and subsequently influencing the eventual spore ATP reservoir.

View Article and Find Full Text PDF

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS.

View Article and Find Full Text PDF

The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC).

View Article and Find Full Text PDF

The Gram positive bacterium and its relatives are capable of forming a durable dormant long-lasting spore. Although spores can remain dormant for years, they possess the remarkable capacity to rapidly resume life and convert into actively growing cells. This cellular transition initiates with a most enigmatic irreversible event, termed germination, lasting only for a few minutes.

View Article and Find Full Text PDF

Appearance of plaques on a bacterial lawn is a sign of successive rounds of bacteriophage infection. Yet, mechanisms evolved by bacteria to limit plaque spread have been hardly explored. Here, we investigated the dynamics of plaque development by lytic phages infecting the bacterium Bacillus subtilis.

View Article and Find Full Text PDF

Bacteria can produce membranous nanotubes that mediate contact-dependent exchange of molecules among bacterial cells. However, it is unclear how nanotubes cross the cell wall to emerge from the donor or to penetrate into the recipient cell. Here, we report that Bacillus subtilis utilizes cell wall remodeling enzymes, the LytC amidase and its enhancer LytB, for efficient nanotube extrusion and penetration.

View Article and Find Full Text PDF

Bacteria in nature are known to survive for long periods under restricting conditions, mainly by reducing their growth rate and metabolic activity. Here, we uncover a novel strategy utilized by bacterial cells to resist aging by propagating rather than halting division. Bacterial aging was monitored by inspecting colonies of the Gram-positive soil bacterium , which is capable of differentiating into various cell types under nutrient exhaustion.

View Article and Find Full Text PDF

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination.

View Article and Find Full Text PDF

We have previously described the existence of membranous nanotubes, bridging adjacent bacteria, facilitating intercellular trafficking of nutrients, cytoplasmic proteins, and even plasmids, yet components enabling their biogenesis remain elusive. Here we reveal the identity of a molecular apparatus providing a platform for nanotube biogenesis. Using Bacillus subtilis (Bs), we demonstrate that conserved components of the flagellar export apparatus (FliO, FliP, FliQ, FliR, FlhB, and FlhA), designated CORE, dually serve for flagellum and nanotube assembly.

View Article and Find Full Text PDF

Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E.

View Article and Find Full Text PDF

Bacillus subtilis diadenylate cyclase DisA converts two ATPs into c-di-AMP, but this activity is suppressed upon interaction with sites of DNA damage. DisA forms a rapid moving focus that pauses upon induction of DNA damage during spore development. We report that DisA pausing, however, was not observed in the absence of the RecO mediator or of the RecA recombinase, suggesting that DisA binds to recombination intermediates formed by RecA in concert with RecO.

View Article and Find Full Text PDF

Bacteriophages (phages) are the most abundant entities in nature, yet little is known about their capacity to acquire new hosts and invade new niches. By exploiting the Gram-positive soil bacterium Bacillus subtilis (B. subtilis) and its lytic phage SPO1 as a model, we followed the coevolution of bacteria and phages.

View Article and Find Full Text PDF

Fumarase is distributed between two compartments of the eukaryotic cell. The enzyme catalyses the reversible conversion of fumaric to L-malic acid in mitochondria as part of the tricarboxylic acid (TCA) cycle, and in the cytosol/nucleus as part of the DNA damage response (DDR). Here, we show that fumarase of the model prokaryote (Fum-bc) is induced upon DNA damage, co-localized with the bacterial DNA and is required for the DDR.

View Article and Find Full Text PDF

Colonies are an abundant form of bacterial multicellularity; however, relatively little is known about the initial stages of their construction. We have previously described that colony development of the soil bacterium is a highly ordered process, typically initiating with the formation of extending cell chains arranged in a Y shape structure. Furthermore, we demonstrated that Y arm extension is a key for defining the size of the future colony.

View Article and Find Full Text PDF

Bacteria use elaborate molecular machines for intercellular contact-dependent interactions. We discuss a relatively less explored type of intercellular connections mediated by tubular membranous bridges, termed nanotubes. Increasing evidence suggests that nanotube structures mediate cytoplasmic molecular trade among neighboring cells of the same and different species.

View Article and Find Full Text PDF

Bacteria have developed various mechanisms by which they sense, interact, and kill other bacteria, in an attempt to outcompete one another and survive. Here we show that Bacillus subtilis can kill and prey on Bacillus megaterium. We find that Bacillus subtilis rapidly inhibits Bacillus megaterium growth by delivering the tRNase toxin WapA.

View Article and Find Full Text PDF

Bacteriophages (phages) typically exhibit a narrow host range, yet they tremendously impact horizontal gene transfer (HGT). Here, we investigate phage dynamics in communities harboring phage-resistant (R) and sensitive (S) bacteria, a common scenario in nature. Using Bacillus subtilis and its lytic phage SPP1, we demonstrate that R cells, lacking SPP1 receptor, can be lysed by SPP1 when co-cultured with S cells.

View Article and Find Full Text PDF

Bacteria display an array of contact-dependent interaction systems that have evolved to facilitate direct cell-to-cell communication. We have previously identified a mode of bacterial communication mediated by nanotubes bridging neighboring cells. Here, we elucidate nanotube architecture, dynamics, and molecular components.

View Article and Find Full Text PDF

When grown on a solid surface, bacteria form highly organized colonies, yet little is known about the earliest stages of colony establishment. Following Bacillus subtilis colony development from a single progenitor cell, a sequence of highly ordered spatiotemporal events was revealed. Colony was initiated by the formation of leading-cell chains, deriving from the colony center and extending in multiple directions, typically in a "Y-shaped" structure.

View Article and Find Full Text PDF

Background: Bacterial spores can remain dormant for decades, yet harbor the exceptional capacity to rapidly resume metabolic activity and recommence life. Although germinants and their corresponding receptors have been known for more than 30 years, the molecular events underlying this remarkable cellular transition from dormancy to full metabolic activity are only partially defined.

Results: Here, we examined whether protein phospho-modifications occur during germination, the first step of exiting dormancy, thereby facilitating spore revival.

View Article and Find Full Text PDF

Unlabelled: Chromosomal DNA is a constant source of information, essential for any given cell to respond and adapt to changing conditions. Here, we investigated the fate of exponentially growing bacterial cells experiencing a sudden and rapid loss of their entire chromosome. Utilizing Bacillus subtilis cells harboring an inducible copy of the endogenous toxin yqcG, which encodes an endonuclease, we induced the formation of a population of cells that lost their genetic information simultaneously.

View Article and Find Full Text PDF

The bacterial spore can rapidly convert from a dormant to a fully active cell. Here we study this remarkable cellular transition in Bacillus subtilis and reveal the identity of the newly synthesized proteins throughout spore revival. Our analysis uncovers a highly ordered developmental program that correlates with the spore morphological changes and reveals the spatial and temporal molecular events fundamental to reconstruct a cell.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2tei2u0vtrbc94b2hnvdtgm103u1lqd1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once