The circadian timing system orchestrates most of mammalian physiology and behavior in synchrony with the external light/dark cycle. This regulation is achieved through endogenous clocks present in virtually all body cells, where they control key cellular processes, including metabolism, transport, and the cell cycle. Consistently, it has been observed in preclinical cancer models that both the efficacy and toxicity of most chemotherapeutic drugs depend on their time of administration.
View Article and Find Full Text PDFCircadian timing of anticancer medications has improved treatment tolerability and efficacy several fold, yet with intersubject variability. Using three C57BL/6-based mouse strains of both sexes, we identified three chronotoxicity classes with distinct circadian toxicity patterns of irinotecan, a topoisomerase I inhibitor active against colorectal cancer. Liver and colon circadian 24-hour expression patterns of clock genes Rev-erbα and Bmal1 best discriminated these chronotoxicity classes, among 27 transcriptional 24-hour time series, according to sparse linear discriminant analysis.
View Article and Find Full Text PDFMuscle atrophy is a debilitating process associated with many chronic wasting diseases, like cancer, diabetes, sepsis, and renal failure. Rapid loss of muscle mass occurs mainly through the activation of protein breakdown by the ubiquitin proteasome pathway. Foxo3a transcription factor is critical for muscle atrophy, since it activates the expression of ubiquitin ligase Atrogin-1.
View Article and Find Full Text PDFPurpose: Several fibroblast growth factors (FGFs) exhibit neuroprotective influences against retinal photoreceptor degeneration. The expression of FGF receptor (FGFR) 4 on photoreceptors suggests a specific ligand, FGF-19, might also be beneficial. The authors hence examined the potential role of FGF-19 in this regard.
View Article and Find Full Text PDFNRL (neural retina leucine zipper) is a key basic motif-leucine zipper (bZIP) transcription factor, which orchestrates rod photoreceptor differentiation by activating the expression of rod-specific genes. The deletion of Nrl in mice results in functional cones that are derived from rod precursors. However, signaling pathways modulating the expression or activity of NRL have not been elucidated.
View Article and Find Full Text PDFPrevious studies on the fate of human thyroperoxidase (hTPO) molecules have shown that, after being synthesized, these glycoproteins interact with calnexin and calreticulin and that only some of them are able to acquire a partially folded structure. The aim of the present study was to further investigate the potential role of BiP, another major protein chaperon. Co-immunoprecipitation experiments showed the occurrence of interactions between hTPO and BiP.
View Article and Find Full Text PDFObjectives: Fibroblast growth factors (FGFs) represent potent effectors and play essential roles in both normal development and many pathological processes. Little is known about their possible implication in retinoblastoma growth. We sought to examine FGF high- and low-affinity receptor (FGFR) expression, activation of FGFR1 by acidic FGF (FGF-1), and proliferative effects on Y79 cells.
View Article and Find Full Text PDFThe thyrotropin receptor (TSHR) is a member of the G protein-coupled receptor superfamily. It has by now been clearly established that the maturation of the glycoproteins synthesized in the endoplasmic reticulum involves interactions with molecular chaperones, which promote the folding and assembly of the glycoproteins. In this study, we investigated whether calnexin (CNX), calreticulin (CRT) and BiP, three of the main molecular chaperones present in the endoplasmic reticulum, interact with the TSHR and what effects these interactions might have on the folding of the receptor.
View Article and Find Full Text PDFThyroglobulin (Tg) binds to cell surfaces through various binding sites of high, moderate and low affinity. We have previously shown that binding with low to moderate affinity is pH dependent, selective, but not tissue specific. To identify the regions of Tg involved in this cell surface binding, we studied the binding of (125)I-labeled cyanogen bromide peptides from human Tg to cell surfaces of thyroid cells (inside-out follicles) and of CHO cells.
View Article and Find Full Text PDFThyroperoxidase (TPO), a type I transmembrane heme containing glycoprotein, catalyzes iodide organification and thyroid hormone synthesis. One of the two main alternatively spliced forms of this enzyme, TPOzanelli, which is present in Graves's disease thyroid tissue, has a cytoplasmic domain completely modified. In the first stage of this study, the results of RT-PCR experiments showed that the TPOzanelli mRNA is present in normal thyroid tissue.
View Article and Find Full Text PDFTo evaluate the functional role of complex asparagine-linked oligosaccharides of the human thyrotropin receptor (TSHR), a Chinese hamster ovary cell line (JP09) and a K562 cell line (K562-TSHR) expressing this receptor were treated with deoxymannojirimycin (dMM), a mannosidase I inhibitor. dMM blocks the formation of complex-type structures and leads to the formation of high-mannose-type structures. Treatment of cells with dMM led to a decrease in the number of thyrotropin (TSH)-binding sites at the cell surface.
View Article and Find Full Text PDFHuman thyroperoxidase (hTPO), a type I transmembrane glycoprotein, plays a key role in thyroid hormone synthesis. In a previous paper (Fayadat, L., Niccoli, P.
View Article and Find Full Text PDFHuman thyroperoxidase (hTPO) is a type I transmembrane-bound heme-containing glycoprotein that catalyzes the synthesis of thyroid hormones. In a previous study we stably expressed hTPO in Chinese hamster ovary cells and observed that after the synthesis, only 20% of the hTPO molecules were recognized by a monoclonal antibody (mAb 15) directed against a conformational structure, and that only 2% were able to reach the cell surface. In the present study it was proposed to determine how calnexin (CNX) and calreticulin (CRT) contribute to the folding of hTPO.
View Article and Find Full Text PDF