Publications by authors named "Siewerdsen J"

Background: Digital breast tomosynthesis (DBT) has outpaced digital mammography in clinical adoption in the United States; however, substantial technological limitations remain to image quality in DBT, including undersampling from a one-dimensional (1D) scan geometry, x-ray source motion during acquisition, and patient motion artifacts from long exam times.

Purpose: A thermionic cathode x-ray system employing two-dimensional (2D, planar) multiple x-ray-source arrays (MXA) is proposed to improve DBT image quality.

Methods: A 1D MXA, consisting of a linear array of thermionic cathodes was used to simulate a 2D MXA.

View Article and Find Full Text PDF

Prediction and avoidance of intraoperative hypotension (IOH) can lead to less postoperative morbidity. Machine learning (ML) is increasingly being applied to predict IOH. We hypothesize that incorporating demographic and physiological features in an ML model will improve the performance of IOH prediction.

View Article and Find Full Text PDF

Purpose: We aim to compare the imaging performance of a cone-beam CT (CBCT) imaging system with noncircular scan protocols (sine-on-sphere) to a conventional circular orbit.

Approach: A biplane C-arm system (ARTIS Icono; Siemens Healthineers) capable of circular and noncircular CBCT acquisition was used, with the latter orbit (sine-on-sphere, "Sine Spin") executing a sinusoidal motion with tilt amplitude over the half-scan orbit. A test phantom was used for the characterization of image uniformity, noise, noise-power spectrum (NPS), spatial resolution [modulation transfer function (MTF) in axial and oblique directions], and cone-beam artifacts.

View Article and Find Full Text PDF

Background: Adequate image enhancement of organs and blood vessels of interest is an important aspect of image quality in contrast-enhanced computed tomography (CT). There is a need for an objective method for evaluation of vessel contrast that can be automatically and systematically applied to large sets of CT exams.

Purpose: The purpose of this work was to develop a method to automatically segment and measure attenuation Hounsfield Unit (HU) in the portal vein (PV) in contrast-enhanced abdomen CT examinations.

View Article and Find Full Text PDF

Computed tomography (CT) is a common modality employed for musculoskeletal imaging. Conventional CT techniques are useful for the assessment of trauma in detection, characterization and surgical planning of complex fractures. CT arthrography can depict internal derangement lesions and impact medical decision making of orthopedic providers.

View Article and Find Full Text PDF

The present standard of care for unresectable liver cancer is transarterial chemoembolization (TACE), which involves using chemotherapeutic particles to selectively embolize the arteries supplying hepatic tumors. Accurate volumetric identification of intricate fine vascularity is crucial for selective embolization. Three-dimensional imaging, particularly cone-beam CT (CBCT), aids in visualization and targeting of small vessels in such highly variable anatomy, but long image acquisition time results in intra-scan patient motion, which distorts vascular structures and tissue boundaries.

View Article and Find Full Text PDF

Purpose: Interventional Cone-Beam CT (CBCT) offers 3D visualization of soft-tissue and vascular anatomy, enabling 3D guidance of abdominal interventions. However, its long acquisition time makes CBCT susceptible to patient motion. Image-based autofocus offers a suitable platform for compensation of deformable motion in CBCT, but it relies on handcrafted motion metrics based on first-order image properties and that lack awareness of the underlying anatomy.

View Article and Find Full Text PDF

[F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of MR imaging in spine surgery to enhance treatment planning and reduce radiation exposure, especially in pediatric cases where CT scans are limited.
  • A novel method is introduced for aligning preoperative MR images with intraoperative long-length tomosynthesis images using a generative adversarial network and a sophisticated registration algorithm, demonstrating significant accuracy improvements.
  • Results showed low projection and registration errors in both cadaver tests and clinical images, validating the method's robustness and effectiveness in managing spinal anatomy during surgery.
View Article and Find Full Text PDF
Article Synopsis
  • Standards for evaluating image quality in multi-detector CT (MDCT) and cone-beam CT (CBCT) are being updated to align with new technologies, necessitating effective quality assurance methods suitable for various systems.
  • The study aimed to test the feasibility of using a single test phantom for ongoing image quality assessments in both MDCT and CBCT, employing semiautomated analysis tools for efficient data collection.
  • Results indicated that semiautomated quantitative metrics revealed important insights for quality assurance, highlighting variations due to system performance and setup, and establishing control limits for QA actions.
View Article and Find Full Text PDF

Background: Dual-energy (DE) detection of bone marrow edema (BME) would be a valuable new diagnostic capability for the emerging orthopedic cone-beam computed tomography (CBCT) systems. However, this imaging task is inherently challenging because of the narrow energy separation between water (edematous fluid) and fat (health yellow marrow), requiring precise artifact correction and dedicated material decomposition approaches.

Purpose: We investigate the feasibility of BME assessment using kV-switching DE CBCT with a comprehensive CBCT artifact correction framework and a two-stage projection- and image-domain three-material decomposition algorithm.

View Article and Find Full Text PDF

Purpose: To advance the development of radiomic models of bone quality using the recently introduced Ultra-High Resolution CT (UHR CT), we investigate inter-scan reproducibility of trabecular bone texture features to spatially-variant azimuthal and radial blurs associated with focal spot elongation and gantry rotation.

Methods: The UHR CT system features 250×250 μm detector pixels and an x-ray source with a 0.4×0.

View Article and Find Full Text PDF

Cone-beam computed tomography (CBCT) is an emerging modality for imaging of the equine patient. The objective of this prospective, descriptive, exploratory study was to assess visualization tasks using CBCT compared with conventional fan-beam CT (FBCT) for imaging of the metacarpophalangeal joint in equine cadavers. Satisfaction scores were numerically excellent with both CBCT and FBCT for bone evaluation, and FBCT was numerically superior for soft tissue evaluation.

View Article and Find Full Text PDF

A system for performance assessment and quality assurance (QA) of surgical trackers is reported based on principles of geometric accuracy and statistical process control (SPC) for routine longitudinal testing. A simple QA test phantom was designed, where the number and distribution of registration fiducials was determined drawing from analytical models for target registration error (TRE). A tracker testbed was configured with open-source software for measurement of a TRE-based accuracy metric and Jitter ().

View Article and Find Full Text PDF

Purpose: Cone-beam CT (CBCT) is used in interventional radiology (IR) for identification of complex vascular anatomy, difficult to visualize in 2D fluoroscopy. However, long acquisition time makes CBCT susceptible to soft-tissue deformable motion that degrades visibility of fine vessels. We propose a targeted framework to compensate for deformable intra-scan motion via learned full-sequence models for identification of vascular anatomy coupled to an autofocus function specifically tailored to vascular imaging.

View Article and Find Full Text PDF

Purpose: Cone-beam CT (CBCT) is widespread in abdominal interventional imaging, but its long acquisition time makes it susceptible to patient motion. Image-based autofocus has shown success in CBCT deformable motion compensation, via deep autofocus metrics and multi-region optimization, but it is challenged by the large parameter dimensionality required to capture intricate motion trajectories. This work leverages the differentiable nature of deep autofocus metrics to build a novel optimization strategy, Multi-Stage Adaptive Spine Autofocus (MASA), for compensation of complex deformable motion in abdominal CBCT.

View Article and Find Full Text PDF

. Surgical guidewires are commonly used in placing fixation implants to stabilize fractures. Accurate positioning of these instruments is challenged by difficulties in 3D reckoning from 2D fluoroscopy.

View Article and Find Full Text PDF

Since its inception in the early 20th century, interventional radiology (IR) has evolved tremendously and is now a distinct clinical discipline with its own training pathway. The arsenal of modalities at work in IR includes x-ray radiography and fluoroscopy, CT, MRI, US, and molecular and multimodality imaging within hybrid interventional environments. This article briefly reviews the major developments in imaging technology in IR over the past century, summarizes technologies now representative of the standard of care, and reflects on emerging advances in imaging technology that could shape the field in the century ahead.

View Article and Find Full Text PDF

Purpose: Motivated by emerging cone-beam computed tomography (CBCT) systems and scan orbits, we aim to quantitatively assess the completeness of data for 3D image reconstruction-in turn, related to "cone-beam artifacts." Fundamental principles of cone-beam sampling incompleteness are considered with respect to an analytical figure-of-merit [FOM, denoted ] and related to an empirical FOM (denoted ) for measurement of cone-beam artifact magnitude in a test phantom.

Approach: A previously proposed analytical FOM [, defined as the minimum angle between a point in the 3D image reconstruction and the x-ray source over the scan orbit] was analyzed for a variety of CBCT geometries.

View Article and Find Full Text PDF

Purpose: The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships.

Methods And Materials: The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs.

View Article and Find Full Text PDF

Purpose: Existing methods to improve the accuracy of tibiofibular joint reduction present workflow challenges, high radiation exposure, and a lack of accuracy and precision, leading to poor surgical outcomes. To address these limitations, we propose a method to perform robot-assisted joint reduction using intraoperative imaging to align the dislocated fibula to a target pose relative to the tibia.

Methods: The approach (1) localizes the robot via 3D-2D registration of a custom plate adapter attached to its end effector, (2) localizes the tibia and fibula using multi-body 3D-2D registration, and (3) drives the robot to reduce the dislocated fibula according to the target plan.

View Article and Find Full Text PDF

Background: Craniectomies represent a lifesaving neurosurgical procedure for many severe neurological conditions, such as traumatic brain injury. Syndrome of trephined (SoT) is an important complication of decompressive craniectomy, and cranial reconstruction is the definitive treatment. However, many patients cannot undergo surgical intervention because of neurological status, healing of the primary surgical wound, or the presence of concurrent infection, which may prevent cranioplasty.

View Article and Find Full Text PDF
Article Synopsis
  • Image-guided neurosurgery relies on accurate localization, but challenges arise from brain deformation during surgery, making it hard to use preoperative images effectively.
  • A 3D deep learning framework, DL-Recon, has been developed to enhance the quality of intraoperative CBCT images by combining physics-based models with deep learning techniques, utilizing uncertainty information for better accuracy.
  • The framework was trained and validated using paired CT and simulated CBCT images, and its performance was evaluated for clinical feasibility through a pilot study involving neurosurgery patients, showing promise in improving the registration of brain tissues during surgery.
View Article and Find Full Text PDF

Objective: Preoperative planning for otologic or neurotologic procedures often requires manual segmentation of relevant structures, which can be tedious and time-consuming. Automated methods for segmenting multiple geometrically complex structures can not only streamline preoperative planning but also augment minimally invasive and/or robot-assisted procedures in this space. This study evaluates a state-of-the-art deep learning pipeline for semantic segmentation of temporal bone anatomy.

View Article and Find Full Text PDF

This report reviews the image acquisition and reconstruction characteristics of C-arm Cone Beam Computed Tomography (C-arm CBCT) systems and provides guidance on quality control of C-arm systems with this volumetric imaging capability. The concepts of 3D image reconstruction, geometric calibration, image quality, and dosimetry covered in this report are also pertinent to CBCT for Image-Guided Radiation Therapy (IGRT). However, IGRT systems introduce a number of additional considerations, such as geometric alignment of the imaging at treatment isocenter, which are beyond the scope of the charge to the task group and the report.

View Article and Find Full Text PDF