Publications by authors named "Sietsma J"

This study proposes a new approach to determine phenomenological or physical relations between microstructure features and the mechanical behavior of metals bridging advanced statistics and materials science in a study of the effect of hard precipitates on the hardening of metal alloys. Synthetic microstructures were created using multi-level Voronoi diagrams in order to control microstructure variability and then were used as samples for virtual tensile tests in a full-field crystal plasticity solver. A data-driven model based on Functional Principal Component Analysis (FPCA) was confronted with the classical Voce law for the description of uniaxial tensile curves of synthetic AISI 420 steel microstructures consisting of a ferritic matrix and increasing volume fractions of M23C6 carbides.

View Article and Find Full Text PDF

Investigating the main determinants of the mechanical performance of metals is not a simple task. Already known physically inspired qualitative relations between 2D microstructure characteristics and 3D mechanical properties can act as the starting point of the investigation. Isotonic regression allows to take into account ordering relations and leads to more efficient and accurate results when the underlying assumptions actually hold.

View Article and Find Full Text PDF

Interphase precipitation occurring during solid-state phase transformations in micro-alloyed steels is generally studied through transmission electron microscopy, atom probe tomography, and ex situ measurements of Small-Angle Neutron Scattering (SANS). The advantage of SANS over the other two characterization techniques is that SANS allows for the quantitative determination of size distribution, volume fraction, and number density of a statistically significant number of precipitates within the resulting matrix at room temperature. However, the performance of ex situ SANS measurements alone does not provide information regarding the probable correlation between interphase precipitation and phase transformations.

View Article and Find Full Text PDF

The dissolution of rare earth oxides in molten fluorides is a critical step in the preparation of the corresponding rare earth metals by oxide-fluoride electrolysis. However, quantitatively understanding the nature of dissolution, especially in the case of molten salts, is usually difficult to be achieved by characterization. In this paper, the dissolution behavior of NdO particles in molten fluorides was studied via observation with confocal scanning laser microscopy.

View Article and Find Full Text PDF

Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity.

View Article and Find Full Text PDF

Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains.

View Article and Find Full Text PDF

In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.

View Article and Find Full Text PDF

Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e.

View Article and Find Full Text PDF

Introduction: In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI.

View Article and Find Full Text PDF

A 60-year-old man presented with a suspected retroperitoneal mass, after primarily resected thymoma (type B1/B2, Masaoke stage 1). A germ cell tumour was excluded and a diagnostic biopsy was performed. The mass appeared to be a local recurrence of the primary thymoma, for example, a droplet metastasis, progressed to type B3.

View Article and Find Full Text PDF

Aim: In this feasibility study we investigated whether magnetic resonance imaging (MRI) with ultrasmall superparamagnetic iron oxide (USPIO) can be used to identify regional and distant lymph nodes, including mediastinal and celiac lymph node metastases in patients with oesophageal cancer.

Patients And Methods: Ten patients with a potentially curative resectable cancer of the oesophagus were eligible for this study. All patients included in the study had positive lymph nodes on conventional staging (including endoscopic ultrasound, computed tomography and fluorodeoxyglucose-positron emission tomography).

View Article and Find Full Text PDF

A fast three-dimensional phase transformation model is formulated for the transformation from ferrite to austenite in low-carbon steel. The model addresses the parent microstructure, the nucleation behaviour of the new phase and the growth of the new phase. During the growth, the interface velocity of the ferrite grains is calculated using a mixed-mode growth model.

View Article and Find Full Text PDF

By the combination of electron tomography with image segmentation, the properties of 299 NiO crystallites contained in 6 SBA-15 pores were studied. A statistical analysis of the particle size showed that crystallites between 2 and 6 nm were present with a distribution maximum at 3 and 4 nm, for the number-weighted and volume-weighted curves, respectively. Interparticle distances between nearest neighbors were 1-3 nm with very few isolated crystallites.

View Article and Find Full Text PDF

Morphology and structural integrity of fungal cells depend on cell wall polysaccharides. The chemical structure and biosynthesis of two types of these polysaccharides, chitin and (1-->3)-beta-glucan, have been studied extensively, whereas little is known about alpha-glucan. Here we describe the chemical structure of alpha-glucan isolated from wild-type and mutant cell walls of the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

UV-Vis, combined with ED-XAFS shows, for the first time, the evolution of inactive Pd dimers and trimers, that are a possible first stage in the deactivation process of important palladium catalysed reactions, leading to larger palladium clusters and eventually palladium black.

View Article and Find Full Text PDF

The mechanical properties of polycrystalline materials are largely determined by the kinetics of the phase transformations during the production process. Progress in x-ray diffraction instrumentation at synchrotron sources has created an opportunity to study the transformation kinetics at the level of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models.

View Article and Find Full Text PDF

Disruption of the SC3 hydrophobin gene of Schizophyllum commune (DeltaSC3 strain) affected the composition of the cell wall. Compared to a wild-type strain the amount of mucilage (i.e.

View Article and Find Full Text PDF

The Neurospora crassa cot-1 gene encodes a Ser/Thr protein kinase, which is involved in hyphal elongation. Many vacuoles, abnormally shaped mitochondria, and nuclei, along with differences in the structure of the cell wall and hyphal septa, were observed in hyphae of the cot-1 mutant shortly after a shift to the restrictive temperature. Immunolocalization experiments indicated that COT1 was associated with the cytoplasmic membrane; COT1 was also detected in the cytoplasm.

View Article and Find Full Text PDF

Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction.

View Article and Find Full Text PDF

Polyclonal anti-chitin synthase antibodies raised against the Saccharomyces cerevisiae CHS2 gene product were used to identify and localize chitin synthase in the filamentous ascomycete Neurospora crassa. A single band of approximately 110 kDa was observed in Western blots of total protein extracts of N. crassa, probed with these antibodies.

View Article and Find Full Text PDF

Pulse-chase experiments with [14C]glucose demonstrated that in the cell wall of wild-type Saccharomyces cerevisiae alkali-soluble (1-3)-beta-glucan serves as a precursor for alkali-insoluble (1-3)-beta-glucan. The following observations support the notion that the insolubilization of the glucan is caused by linkage to chitin: (i) degradation of chitin by chitinase completely dissolved the glucan, and (ii) disruption of the gene for chitin synthase 3 prevented the formation of alkali-insoluble glucan. These cells, unable to form a glucan-chitin complex, were highly vulnerable to hypo-osmotic shock indicating that the linkage of the two polymers significantly contributes to the mechanical strength of the cell wall.

View Article and Find Full Text PDF