Purpose: HSP90 chaperones have key client proteins that are involved in all hallmarks of breast cancer growth and progression. The primary aim of this clinical trial was to evaluate the feasibility of using (89)Zr-trastuzumab PET (for HER2-positive breast cancer) or (89)Zr-bevacizumab PET [for estrogen receptor (ER)-positive breast cancer] to determine in vivo degradation of client proteins caused by the novel HSP90 inhibitor NVP-AUY922.
Experimental Design: Of note, 70 mg/m(2) NVP-AUY922 was administered intravenously in a weekly schedule to patients with advanced HER2 or ER-positive breast cancer.
Eur J Cancer
September 2014
Purpose: Triple negative breast cancer (TNBC) is biologically characterised by heterogeneous presence of molecular pathways underlying it. Insulin-like growth factor receptor-1 (IGF-1R) expression and vascular endothelial growth factor-A (VEGF-A) have been identified as key factors in these pathways in TNBC. In this study, we aimed at in vivo PET imaging the effect of heat shock protein (Hsp) 90 inhibition by means of NVP-AUY922 on these pathways, with zirconium-89 ((89)Zr) labelled antibodies targeting IGF-1R and VEGF-A.
View Article and Find Full Text PDFHuman epidermal growth factor receptor (HER)2 imaging with radiolabeled trastuzumab might support HER2-targeted therapy. It is, however, frequently questioned whether HER2 imaging is also possible during trastuzumab treatment as the receptor might be saturated. We studied the effect of trastuzumab treatment on 111In-trastuzumab uptake.
View Article and Find Full Text PDFUnlabelled: Vascular endothelial growth factor (VEGF)-A is overexpressed in most malignant and premalignant breast lesions. VEGF-A can be visualized noninvasively with PET imaging and using the tracer (89)Zr-labeled bevacizumab. In this clinical feasibility study, we assessed whether VEGF-A in primary breast cancer can be visualized by (89)Zr-bevacizumab PET.
View Article and Find Full Text PDF