A basic FcRn-regulated clearance mechanism is investigated using the method of matched asymptotic expansions. The broader aim of the work is to obtain further insight on the mechanism, thereby providing theoretical support for future pharmacologically-based pharmacokinetic modelling efforts. The corresponding governing equations are first non-dimensionalised and the order of magnitudes of the model parameters are assessed based on their values reported in the literature.
View Article and Find Full Text PDFThis white paper summarizes the recommendations of the absorption, distribution, metabolism, and excretion (ADME) Subcommittee of the Oligonucleotide Safety Working Group for the characterization of absorption, distribution, metabolism, and excretion of oligonucleotide (ON) therapeutics in nonclinical studies. In general, the recommended approach is similar to that for small molecule drugs. However, some differences in timing and/or scope may be warranted due to the greater consistency of results across ON classes as compared with the diversity among small molecule classes.
View Article and Find Full Text PDFBackground: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC).
Methods: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38.
In the last two decades, antisense oligonucleotides (AONs) that induce corrective exon skipping have matured as promising therapies aimed at tackling the dystrophin deficiency that underlies the severe and progressive muscle fiber degeneration in Duchenne muscular dystrophy (DMD) patients. Pioneering first generation exon 51 skipping AONs like drisapersen and eteplirsen have more recently been followed up by AONs for exons 53 and 45, with, to date, a total of four exon skipping AON drugs having reached (conditional) regulatory US Food and Drug Administration (FDA) approval for DMD. Nonetheless, considering the limited efficacy of these drugs, there is room for improvement.
View Article and Find Full Text PDFDelivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs.
View Article and Find Full Text PDFSpinocerebellar ataxia type 3 (SCA3) and type 1 (SCA1) are dominantly inherited neurodegenerative disorders that are currently incurable. Both diseases are caused by a CAG-repeat expansion in exon 10 of the Ataxin-3 and exon 8 of the Ataxin-1 gene, respectively, encoding an elongated polyglutamine tract that confers toxic properties to the resulting proteins. We have previously shown lowering of the pathogenic polyglutamine protein in Huntington's disease mouse models using (CUG)7, a CAG repeat-targeting antisense oligonucleotide.
View Article and Find Full Text PDFDuchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs).
View Article and Find Full Text PDFA clinical pharmacokinetic study was performed in 12 healthy women to evaluate systemic exposure to aluminum following topical application of a representative antiperspirant formulation under real-life use conditions. A simple roll-on formulation containing an extremely rare isotope of aluminum ( Al) chlorohydrate (ACH) was prepared to commercial specifications. A Al radio-microtracer was used to distinguish dosed aluminum from natural background, using accelerated mass spectroscopy.
View Article and Find Full Text PDFIdentification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs).
View Article and Find Full Text PDFMicrodosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics.
View Article and Find Full Text PDFToxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been "reverse dosimetry," in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day).
View Article and Find Full Text PDFIn the EU collaborative project ChemScreen an alternative, in vitro assay-based test strategy was developed to screen compounds for reproductive toxicity. A toxicokinetic modeling approach was used to allow quantitative comparison between effective concentrations in the in vitro test battery and observations of developmental toxicity in vivo. This modeling strategy is based on (1) the definition of relevant observations of toxicity in vivo, (2) simulation of the corresponding systemic concentrations in vivo by toxicokinetic modeling, and (3) correction for differences in protein binding and lipid partitioning between plasma and in vitro test media.
View Article and Find Full Text PDFPreviously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches.
View Article and Find Full Text PDFIn contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter abundance between cell-lines and tissue is by using absolute protein quantification. In the present study, the performance of this strategy to predict human hepatic uptake transport was investigated and compared with traditional scaling from primary human hepatocytes.
View Article and Find Full Text PDFThe use of laboratory animals for toxicity testing in chemical safety assessment meets increasing ethical, economic and legislative constraints. The development, validation and application of reliable alternatives for in vivo toxicity testing are therefore urgently needed. In order to use toxicity data obtained from in vitro assays for risk assessment, in vitro concentration-response data need to be translated into in vivo dose-response data that are needed to obtain points of departure for risk assessment, like a benchmark dose (BMD).
View Article and Find Full Text PDFWe developed a population physiology model, physB, which provides a statistical description of the physiological characteristics in the human population, in terms of the physiological parameters that are needed in physiologically based pharmacokinetic modelling. The model predicts individual organ weights, blood flows and some respiratory parameters from anthropometric properties (body height and weight, age and gender). It draws on two existing models, PK-Pop and P(3)M, but various changes and improvements were made.
View Article and Find Full Text PDFThe European cosmetics legislation foresees a review in 2011 and possible postponement of the 2013 marketing ban to enforce the testing ban for systemic and repeated-dose animal tests. For this purpose, a 119-page report commissioned by the European Commission was published recently. Here, a group of 17 independent experts from the US, Europe, and Japan was brought together to evaluate the report.
View Article and Find Full Text PDFIn this paper, we present a cumulative risk assessment of three anti-androgenic pesticides (vinclozolin, procymidone and prochloraz) using the relative potency factor (RPF) approach and an integrated probabilistic risk assessment (IPRA) model. RPFs for each substance were estimated for three reproductive endpoints (ano-genital distance, and weights of the seminal vesicles and the musculus levator ani/bulbocavernosus) in male rat foetuses exposed in utero. The cumulative dietary intake was estimated based on consumption data and residue data from the Netherlands.
View Article and Find Full Text PDFThe prediction of the effect of cumulative exposure to similarly acting chemicals is commonly done by dose addition, such as in the relative potency factor approach. This can only be done under the assumption of zero interaction between the chemicals. The related, but not equivalent, isobole method is the most common criterion to judge whether interactions between similarly acting chemicals have taken place in a mixture experiment.
View Article and Find Full Text PDFThe applicability of dose addition to combinations of OP-esters and carbamates has been questioned based on theoretical considerations, but these have not been well supported by experimental findings. In the present study, the inhibition of AChE by combinations of methamidophos (an OP-ester) and methomyl (a carbamate) was examined in vitro. AChE inhibition was measured by the Ellman assay.
View Article and Find Full Text PDFTheoretical work has shown that the isobole method is not generally valid as a method for testing the absence or presence of interaction (in the biochemical sense) between chemicals. The present study illustrates how interaction can be tested by fitting a toxicodynamic model to the results of a mixture experiment. The inhibition of cholinesterases (ChE) in human whole blood by various dose combinations of paraoxon and methamidophos was measured in vitro.
View Article and Find Full Text PDFThis paper presents a framework for integrated probabilistic risk assessment of chemicals in the diet which accounts for the possibility of cumulative exposure to chemicals with a common mechanism of action. Variability between individuals in the population with respect to food consumption, concentrations of chemicals in the consumed foods, food processing habits and sensitivity towards the chemicals is addressed by Monte Carlo simulations. A large number of individuals are simulated, for which the individual exposure (iEXP), the individual critical effect dose (iCED) and the ratio between these values (the individual margin of exposure, iMoE) are calculated by drawing random values for all variable parameters from databases or specified distributions.
View Article and Find Full Text PDFA statistical model is presented extending the integrated probabilistic risk assessment (IPRA) model of van der Voet and Slob [van der Voet, H., Slob, W., 2007.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
October 2005
While probabilistic methods gain attention in hazard characterization and are increasingly used in exposure assessment, full use of the available probabilistic information in risk characterization is still uncommon. Usually, after probabilistic hazard characterization and/or exposure assessment, percentiles from the obtained distributions are used as point estimates in risk characterization. In this way, all information on variability and uncertainty is lost, while these aspects are crucial in any risk assessment.
View Article and Find Full Text PDF