Publications by authors named "Sierra A Walker"

Extracellular vesicles (EVs) are cell-released vesicles that mediate intercellular communication by transferring bioactive cargo. Protein and RNA sorting into EVs has been extensively assessed, while selective enrichment of glycans in EVs remains less explored. In this study, a mass spectrometry-based approach, glycan node analysis (GNA), was applied to broadly assess the sorting of glycan features into EVs.

View Article and Find Full Text PDF

Patients with viral myocarditis are at risk of sudden death and may progress to dilated cardiomyopathy (DCM). Currently, no disease-specific therapies exist to treat viral myocarditis. Here it is examined whether reconstituted, lyophilized extracellular vesicles (EVs) from platelets from healthy men and women reduce acute or chronic myocarditis in male mice.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play important roles in (patho)physiological processes by mediating cell communication. Although EVs contain glycans and glycosaminoglycans (GAGs), these biomolecules have been overlooked due to technical challenges in comprehensive glycome analysis coupled with EV isolation. Conventional mass spectrometry (MS)-based methods are restricted to the assessment of N-linked glycans.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-released, heterogenous nanoparticles that play important roles in (patho)physiological processes through intercellular communication. EVs are often depicted as having a single lipid bilayer, but many studies have demonstrated the existence of multilayered EVs. There has been minimal inquiry into differences between unilamellar and multilamellar EVs in terms of biogenesis mechanisms and functional effects.

View Article and Find Full Text PDF

Advancements in extracellular vesicle (EV) studies necessitate the development of optimized storage conditions to ensure preservation of physical and biochemical characteristics. In this study, the most common buffer for EV storage (phosphate-buffered saline/PBS) was compared to a cryoprotective 5% sucrose solution. The size distribution and concentration of EVs from two different sources changed to a greater extent after -80 °C storage in PBS compared to the sucrose solution.

View Article and Find Full Text PDF

Monocyte-induced endothelial cell inflammation is associated with multiple pathological conditions, and extracellular vesicles (EVs) are essential nanosized components of intercellular communication. EVs derived from endotoxin-stimulated monocytes were previously shown to carry pro-inflammatory proteins and RNAs. The role of glucose transporter-1 (GLUT-1) and glycan features in monocyte-derived EV-induced endothelial cell inflammation remains largely unexplored.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk.

View Article and Find Full Text PDF

Physical sciences are often overlooked in the field of cancer research. The Physical Sciences in Oncology Initiative was launched to integrate physics, mathematics, chemistry, and engineering with cancer research and clinical oncology through education, outreach, and collaboration. Here, we provide a framework for education and outreach in emerging transdisciplinary fields.

View Article and Find Full Text PDF

Background: Cancer cell-derived extracellular vesicles (EVs) have previously been shown to contribute to pre-metastatic niche formation. Specifically, aggressive tumors secrete pro-metastatic EVs that travel in the circulation to distant organs to modulate the microenvironment for future metastatic spread. Previous studies have focused on the interface between pro-metastatic EVs and epithelial/endothelial cells in the pre-metastatic niche.

View Article and Find Full Text PDF

Blood plasma is a readily accessible source of extracellular vesicles (EVs), i.e., cell-secreted nanosized carriers that contain various biomolecules, including glycans.

View Article and Find Full Text PDF

Lipoproteins (LPs) are circulating heterogeneous nanoparticles produced by the liver and intestines. LPs play a major role in the transport of dietary and endogenous lipids to target cells through cell membrane receptors or cell surface-bound lipoprotein lipase. The stability, biocompatibility, and selective transport of LPs make them promising delivery vehicles for various therapeutic and imaging agents.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein occasionally involved in cell death that primarily regulates mitochondrial energy metabolism under normal cellular conditions. AIF catalyzes the oxidation of NADH , yet the significance of this redox activity in cells remains unclear. Here, we show that through its enzymatic activity AIF is a critical factor for oxidative stress-induced activation of the mitogen-activated protein kinases JNK1 (c-Jun N-terminal kinase), p38, and ERK (extracellular signal-regulated kinase).

View Article and Find Full Text PDF