Publications by authors named "Sierk Haenisch"

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Although the introduction of tyrosine kinase inhibitors (TKIs) has substantially improved patients' prognosis, drug resistance remains one of the major challenges in CML therapy. MicroRNAs (miRNAs), a class of short non-coding RNAs acting as post-transcriptional regulators, are implicated in CML progression and drug resistance.

View Article and Find Full Text PDF

Intestinal transporters and metabolizing enzymes are the important factors of the intestinal absorption barrier. Because there is evidence that their expression and function may be affected during inflammatory conditions, we investigated gene expression, protein abundance, and regulation of relevant intestinal transporters and metabolizing enzymes in the intestinal mucosa of patients with ulcerative colitis (UC). Specimens from inflamed and noninflamed tissues of 10 patients with UC as well as colonic control tissues of 10 patients without inflammation were subjected to gene (9 enzymes, 15 transporters, 9 cytokines) and microRNA (N = 54) expression analysis.

View Article and Find Full Text PDF

Pain sensitivity is characterized by interindividual variability, determined by factors including genetic variation of nociceptive receptors and pathways. The sigma-1 receptor (SIGMAR1) is involved in pain modulation especially under pre-sensitized conditions. However, the contribution of SIGMAR1 genetic variants to pain generation and sensitivity is unknown yet.

View Article and Find Full Text PDF

BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an -imatinib-resistance model using K-562 cells, microRNA-212 was found to be dysregulated and inversely correlated to ABC-transporter ABCG2 expression, targeting its 3'-UTR.

View Article and Find Full Text PDF

Intestinal drug transporters are crucial determinants for absorption and oral bioavailability of drugs. In healthy tissue donors, a recent study revealed profound discrepancies between mRNA expression and protein abundance as well as differences in the protein content between small and large intestine for clinically relevant multidrug transporters as the ATP binding cassette transporter subfamily B member 1 (ABCB1) and subfamily C member 3 (ABCC3) and the solute carrier family 15 member 1 (SLC15A1, PEPT1). As the mechanisms underlying these observations remained unclear, the aim of the present study was to elucidate the intestinal regiospecific microRNA profile under physiological conditions and identify specific microRNAs contributing to the post-transcriptional regulation of major drug transporters.

View Article and Find Full Text PDF

Regulatory RNAs play a key role in the regulation of protein expression patterns in neurological diseases. Here we studied the regulation of miRNAs in a chronic rat model of temporal lobe epilepsy. The analysis was focused on a putative link with pharmacoresponsiveness as well as the functional implications of the regulation of a selected miRNA.

View Article and Find Full Text PDF

Elafin is a potent reversible inhibitor of the pro-inflammatory proteases leukocyte elastase and protease 3. It is currently in clinical development for the use in postoperative inflammatory diseases. We investigated the pharmacokinetics of (99m)Tc-labeled elafin ((99m)Tc-Elafin) in blood and individual organs in rat after bolus intravenous injection using the single photon emission tomography (SPECT).

View Article and Find Full Text PDF

Aim: To identify the exact length and possible length variations of the ABCB1 3'-UTR as important regulatory site for miRNA interaction of this drug transporter and its possible contribution to drug resistance.

Materials & Methods: 3'-RACE and various standard PCR experiments were performed using cDNA of different human cell lines and liver tissue. The abundance of 3'-UTR fragments was analyzed using quantitative RT-PCR.

View Article and Find Full Text PDF

Aim: Correlation of outcomes of cyclophosphamide (CP) therapy in antineutrophil cytoplasmic antibody-associated vasculitis with genotype polymorphisms in prodrug activating cytochrome P450 enzyme genes CYP2C9 and CYP2C19.

Patients & Methods: One hundred and ninety six patients with antineutrophil cytoplasmic antibody-associated vasculitis treated with CP, either as intravenous pulse or as daily oral medication, were included. Genotypes of CYP2C9 and CYP2C19 were correlated with clinical outcomes (leukopenia, infection, urotoxicity and treatment response).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported.

View Article and Find Full Text PDF

Background: The functional influence of single-nucleotide polymorphisms (SNPs) of the ATP-binding cassette (ABC) transporter ABCC2 (MRP2) has been characterized in numerous studies. The aim of this study was to address the question of whether distinct ABCC2 haplotypes, which differ in their mRNA secondary structures, show an influence on the degree of mRNA and protein downregulation through miRNA interaction.

Methods: A model using human peripheral blood monocytic cells (PBMCs) isolated from healthy Caucasian volunteers, with three defined ABCC2 haplotypes comprising the 5'-UTR SNP -24C>T, the 1249G>A SNP (V417I), and the silent 3972C>T SNP, was outlined.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs, which regulate the expression of their target genes post-transcriptionally by RNA interference. They are involved in almost all cellular processes, including proliferation, differentiation, apoptosis, cell survival and the maintenance of tissue specificity. Recent findings also suggest that efflux pumps of the ABC (ATP-binding cassette) transporter family are subject to miRNA-mediated gene regulation.

View Article and Find Full Text PDF

Aim: A number of studies have demonstrated that ABCB1 and BCRP (ABCG2) actively transport Aβ. We aimed to investigate the association of genetic variants of selected multidrug transporters with Alzheimer's disease (AD) in histopathologically confirmed AD cases and controls.

Materials & Methods: DNA from brain tissue of 71 AD cases with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neuropathological stages B/C and 81 controls was genotyped for selected variants in ABCA1, ABCA7, ABCB1, ABCC2 and ABCG2.

View Article and Find Full Text PDF

Chemoresistance of tumors is often reported to be due to overexpression of efflux transporters or genetic alterations of signaling pathways. More recently, there is increasing evidence that epigenetic modification contributes to the phenomenon of drug resistance. Despite alteration of DNA methylation or histone modifications, deregulated miRNA expression patterns of tumor cells have been identified as interfering with drug response.

View Article and Find Full Text PDF

Background: Despite the enormous success of imatinib in chronic myeloid leukemia (CML), therapy resistance has emerged in a significant proportion of patients, partly because of the overexpression of ABC efflux transporters.

Methods: Using an array comprising 667 miRNAs, we investigated whether the expression of microRNAs (miRNAs) is altered in CML K-562 cells becoming resistant to increasing concentrations of imatinib. ABCB1 and ABCG2 mRNA (quantitative real-time PCR) and protein expression (western blot) were quantified under short-term and 4 months' imatinib treatment.

View Article and Find Full Text PDF

Purpose: The cytotoxic drug cyclophosphamide (CP) is bioactivated into 4-hydroxy-cyclophosphamide (4-OH-CP) through cytochrome P450 enzymes and cleared through aldehyde dehydrogenase and glutathione S-transferase. This prospective study analyzes the influence of drug metabolizing enzyme genotype on (1) plasma 4-OH-CP:CP ratio and (2) myelotoxicity in breast cancer patients on 500 mg/m(2) cyclophosphamide.

Methods: Sixty-eight female breast cancer patients on FAC (fluorouracil, adriamycin, cyclophosphamide) were included.

View Article and Find Full Text PDF

Background: Antiepileptic treatment response has been suggested to be modulated by genetic polymorphisms of drug efflux transporters, in particular ABCB1. Recently, we found a significant association of ABCC2 -24C>T with nonresponse, primarily in the context of generalized epilepsy. Moreover, ABCC2 1249G>A was reported to alter transmembranal carbamazepine transport.

View Article and Find Full Text PDF

microRNAs (miRNAs), which contribute to the post-transcriptional processing through 3'-untranslated region-interference, have been shown to be involved in the regulation of ATP-binding cassette (ABC) membrane transporters. The aim of this study was to investigate whether ABCC2, an important efflux transporter for various endogenous and exogenous compounds at several compartment barriers, is subject to miRNA-mediated post-transcriptional gene regulation. We screened the expression of 377 human miRNAs in HepG2 cells after 48 h of treatment with 5 μM rifampicin [a pregnane X receptor (PXR) ligand] or vehicle using reverse transcription-polymerase chain reaction-based low-density arrays.

View Article and Find Full Text PDF

Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients.

View Article and Find Full Text PDF

Overexpression of the microsomal enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1, human gene HSD11B1 or SDR26C1) associates with the metabolic syndrome as well as some inflammatory diseases. HSD11B1 expression is known to be highly tissue-specific and driven by two distinct promoters, an aspect which to date has been studied very little. Here, we sought to assess differential promoter usage in various glucocorticoid target tissues and cell lines.

View Article and Find Full Text PDF

Polymorphic genes of drug metabolizing enzymes and transporters may influence drug response. With some exemptions, single nucleotide polymorphisms in such genes, however, are not known to be susceptibility factors for breast cancer. This study explored genotype profiles for the breast cancer patients on fluorouracil, doxorubicin and cyclophosphamide (FAC) in a Pakistani set of population and their comparison with HapMap data.

View Article and Find Full Text PDF

Aims: The modulation of the intestinal expression of detoxifying proteins by relevant transcription factors, intracellular receptors and cytokines in ulcerative colitis (UC) is poorly understood. Here, we compared the intestinal expression of drug transporters, metabolizing enzymes and putative regulatory genes between inflamed and noninflamed tissue and studied their modulation by disease activity.

Materials & Methods: Sigmoidal biopsies of 18 UC patients and 18 healthy volunteers matched for age, gender and ABCB1 3435C>T genotype were investigated for mRNA expression levels of 43 systematically selected candidate genes by low-density array real-time PCR.

View Article and Find Full Text PDF

Drug resistance is a severe limitation of chemotherapy of various malignancies. In particular efflux transporters of the ATP-binding cassette family such as ABCB1 (P-glycoprotein), the ABCC (multidrug resistance-associated protein) family, and ABCG2 (breast cancer resistance protein) have been identified as major determinants of chemoresistance in tumor cells. Bioavailability depends not only on the activity of drug metabolizing enzymes but also to a major extent on the activity of drug transport across biomembranes.

View Article and Find Full Text PDF

Objective: We aimed to evaluate the association of non-response to antiepileptic pharmacotherapy with the frequency of variant alleles in the drug transporter genes ABCB1 and ABCC2 or in the CYP2C locus in young patients with epilepsy and an independent cohort of adults with drug-refractory epilepsy.

Methods: A total of 221 pediatric or adolescent Caucasian patients with epilepsy (105 females; age: 14.5+/-6.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate the relationship between ABCC2 gene polymorphisms and the expression/function of the efflux pump in the intestines.
  • Researchers analyzed allele frequencies related to various ABCC2 polymorphisms in a sample of 374 healthy German volunteers and measured the effects on mRNA and protein levels of ABCC2, along with the drug absorption of talinolol.
  • The findings revealed that while most polymorphisms did not significantly affect ABCC2 levels, the 1249G>A variant was linked to increased intestinal transporter activity and lower oral drug bioavailability.
View Article and Find Full Text PDF