Publications by authors named "Sierin Lim"

Background: Working from home during the Covid-19 pandemic was perceived differently by men and women working in STEM fields. The aim of this paper is to highlight the unexpected benefits generated by working from home during the pandemic.

Methods: Qualitative methodology was used to analyze data, collected via survey.

View Article and Find Full Text PDF

Peptide coacervates self-assembling via liquid-liquid phase separation are appealing intracellular delivery vehicles of macromolecular therapeutics (proteins, DNA, mRNA) owing to their non-cytotoxicity, high encapsulation capacity, and efficient cellular uptake. However, the mechanisms by which these viscoelastic droplets cross the cellular membranes remain unknown. Here, using multimodal imaging, data analytics, and biochemical inhibition assays, we identify the key steps by which droplets enter the cell.

View Article and Find Full Text PDF

Higher-order assembly of ferritins has been achieved on copper substrate by introducing cysteines on their surfaces with thiol groups as the active moiety. To elucidate the assembly mechanism, Raman spectroscopy was utilized to characterize the interaction between the copper substrate and the modified ferritin, AfFtnAA/E94C. The resulting higher-order architecture shows enhanced hydrogen evolution reaction activity.

View Article and Find Full Text PDF

Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities.

View Article and Find Full Text PDF

A polymicrobial biofilm model of and was developed to understand whether a pre-existing matrix affects the ability of another species to build a biofilm. was inoculated onto the preformed biofilm consisting of a cellulose matrix. PAO1 colonized and infiltrated the bacterial cellulose biofilm (BC), as indicated by the presence of cells at 19 μm depth in the translucent hydrogel matrix.

View Article and Find Full Text PDF

Bacteria migration at catheter insertion sites presents a serious complication (bacteraemia) with high mortality rates. One strategy to mediate bacteraemia is a physical barrier at the skin-catheter interface. Herein a colorimetric biosensor adhesive (CathoGlu) is designed and evaluated for both colorimetric detection of bacterial infection and application as a bacteria barrier.

View Article and Find Full Text PDF

Hypothesis: Enveloped viruses are pivotal in causing various illnesses, including influenza and COVID-19. The antimicrobial peptide LL-37, a critical part of the human innate immune system, exhibits potential as an antiviral agent capable of thwarting these viral threats. Its mode of action involves versatile and non-specific interactions that culminate in dismantling the viral envelope, ultimately rendering the viruses inert.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required.

View Article and Find Full Text PDF

Contrast agents are employed to enhance the differentiation of diseased cells or lesions from normal tissues in magnetic resonance imaging (MRI). Protein cages have been explored as templates to synthesize superparamagnetic MRI contrast agents for decades. The biological origin imparts natural precision in forming confined nano-sized reaction vessels.

View Article and Find Full Text PDF

The formulation of Pickering emulsions using protein cages is gaining interest for applications in molecular delivery. Despite the growing interest, methods to investigate the at the liquid-liquid interface are limited. This chapter describes standard methods to formulate and protocols to characterize protein cage-stabilized emulsions.

View Article and Find Full Text PDF

Plastic pollution in diverse terrestrial and marine environments is a widely recognised and growing problem. Bio-recycling and upcycling of plastic waste is a potential solution to plastic pollution, as these processes convert plastic waste into useful materials. Polyethylene terephthalate (PET) is the most abundant plastic waste, and this material can be degraded by a class of recently discovered bacterial esterase enzymes known as PET hydrolases (PETase).

View Article and Find Full Text PDF

The wet environment in the oral cavity is challenging for topical disease management approaches. The compromised material properties leading to weak adhesion and short retention (<8 h) in such environment result in frequent reapplication of the therapeutics. Composites of bacterial cellulose (BC) and carbene-based bioadhesives attempt to address these shortcomings.

View Article and Find Full Text PDF

Understanding the mechanisms of charge transport (CT) across biomolecules in solid-state devices is imperative to realize biomolecular electronic devices in a predictive manner. Although it is well-accepted that biomolecule-electrode interactions play an essential role, it is often overlooked. This paper reveals the prominent role of graphene interfaces with Fe-storing proteins in the net CT across their tunnel junctions.

View Article and Find Full Text PDF

In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g.

View Article and Find Full Text PDF

Electrical field-induced charge modulation in graphene-based devices at the nanoscale with ultrahigh density carrier accumulation is important for various practical applications. In bilayer graphene (BLG), inversion symmetry can simply be broken by an external electric field. However, control over charge carrier density at the nanometer scale is a challenging task.

View Article and Find Full Text PDF

Women in Medical Physics and Biomedical Engineering (WiMPBME) is a Task Group established in 2014 under the International Union of Physical and Engineering Scientists in Medicine (IUPESM). The group's main role is to identify, develop, implement, and coordinate various tasks and projects related to women's needs and roles in medical physics and biomedical engineering around the world. The current paper summarizes the past, present and future goals and activities undertaken or planned by the Task group in order to motivate, nurture and support women in medical physics and biomedical engineering throughout their professional careers.

View Article and Find Full Text PDF

(1) Background: This paper aims to present and discuss the most significant challenges encountered by STEM professionals associated with remote working during the COVID-19 lockdowns. (2) Methods: We performed a qualitative analysis of 921 responses from professionals from 76 countries to the open-ended question: "What has been most challenging during the lockdown for you, and/or your family?" (3) Findings: Participants reported challenges within the immediate family to include responsibilities for school, childcare, and children's wellbeing; and the loss of social interactions with family and friends. Participants reported increased domestic duties, blurred lines between home and work, and long workdays.

View Article and Find Full Text PDF

Resistance to doxorubicin (DOX) remains a big challenge to breast cancer treatment especially for triple negative breast cancer (TNBC). Our previous study revealed that the antioxidant system plays an important role in conferring metastasis derived DOX resistance. In this study, we used two-dimensional difference gel electrophoresis (2D-DIGE) proteomics to compare the expression profiles of two generations of TNBC cell lines which have increased metastatic ability in nude mice and exhibited resistance to DOX.

View Article and Find Full Text PDF

Topical treatments for oral wounds and infections exhibit weak adhesion to wet surfaces which results in short retention duration (6-8 hours), frequent dosing requirement and patient incompatibility. To address these limitations, aqueous composites made of fibrillated bacterial cellulose and photoactive bioadhesives are designed for soft epithelial surfaces. The aqueous composites crosslink upon photocuring within a minute and exhibit a transition from viscous to elastic adhesive hydrogels.

View Article and Find Full Text PDF

Topical approaches to oral diseases require frequent dosing due to limited retention time. A mucoadhesive drug delivery platform with extended soft tissue adhesion capability of up to 7 days is proposed for on-site management of oral wound. Bacterial cellulose (BC) and photoactivated carbene-based bioadhesives (PDz) are combined to yield flexible film platform for interfacing soft tissues in dynamic, wet environments.

View Article and Find Full Text PDF

Imaging of immune cells has wide implications in understanding disease progression and staging. While optical imaging is limited in penetration depth due to light properties, magnetic resonance (MR) imaging provides a more powerful tool for the imaging of deep tissues where immune cells reside. Due to poor MR signal to noise ratio, tracking of such cells typically requires contrast agents.

View Article and Find Full Text PDF

Carbene-based macromolecules are an emerging new stimuli-sensitive class of biomaterials that avoid the impediments of free radical polymerization but maintain a rapid liquid-to-biorubber transition. Activation of diazirine-grafted polycaprolactone polyol (CaproGlu) is limited to UVA wavelengths that have tissue exposure constraints and limited light intensities. For the first time, UVA is circumvented with visible light-emitting diodes at 445 nm (blue) to rapidly activate diazirine-to-carbene covalent cross-linking.

View Article and Find Full Text PDF

The COVID-19 pandemic has forced many people, including those in the fields of science and engineering, to work from home. The new working environment caused by the pandemic is assumed to have a different impact on the amount of work that women and men can do from home. Particularly, if the major burden of child and other types of care is still predominantly on the shoulders of women.

View Article and Find Full Text PDF

Stimuli-sensitive biomaterials that are activated by light are in need of formulations that are stable under indoor lighting yet can be activated under direct sunlight. Carbene-based bioadhesives are a new generation of film-forming polymers that are stable under indoor lighting yet are rapidly activated with low-energy UVA light, but have never been evaluated under sunlight exposure. Previous investigations have evolved two flexible carbene-based platforms, where aryl-diazirine is grafted on to polyamidoamine dendrimers (PAMAM-NH; generation-5) or hydrophobic liquid polycaprolactone tetrol to yield G5-Dz and CaproGlu, respectively.

View Article and Find Full Text PDF