Transcriptome analysis was used to investigate the global stress response of the gram-positive bacterium Bacillus subtilis caused by overproduction of the well-secreted AmyQ alpha-amylase from Bacillus amyloliquefaciens. Analyses of the control and overproducing strains were carried out at the end of exponential growth and in stationary phase, when protein secretion from B. subtilis is optimal.
View Article and Find Full Text PDFThe gram-positive bacterium Bacillus subtilis secretes high levels of proteins into its environment. Most of these secretory proteins are exported from the cytoplasm in an unfolded state and have to fold efficiently after membrane translocation. As previously shown for alpha-amylases of Bacillus species, inefficient posttranslocational protein folding is potentially detrimental and stressful.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
April 2007
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins.
View Article and Find Full Text PDFThioredoxins are important thiol-reactive proteins. Most knowledge about this class of proteins is derived from proteome studies, and little is known about the global transcriptional response of cells to various thioredoxin levels. In Bacillus subtilis, thioredoxin A is encoded by trxA and is essential for viability.
View Article and Find Full Text PDFIn Bacillus subtilis competence for genetic transformation develops only in a subpopulation of cells in an isogenic culture. The molecular mechanisms underlying this phenotypic heterogeneity are unknown. In this study, we stepwise simplify the signal transduction cascade leading to competence, yielding a strain devoid of all regulatory inputs for this process that have been identified so far.
View Article and Find Full Text PDFMutations designated gtaC and gtaE that affect alpha-phosphoglucomutase activity required for interconversion of glucose 6-phosphate and alpha-glucose 1-phosphate were mapped to the Bacillus subtilis pgcA (yhxB) gene. Backcrossing of the two mutations into the 168 reference strain was accompanied by impaired alpha-phosphoglucomutase activity in the soluble cell extract fraction, altered colony and cell morphology, and resistance to phages phi29 and rho11. Altered cell morphology, reversible by additional magnesium ions, may be correlated with a deficiency in the membrane glycolipid.
View Article and Find Full Text PDFActivity of the Tat machinery for protein transport across the inner membrane of Escherichia coli and the chloroplast thylakoidal membrane requires the presence of three membrane proteins: TatA, TatB and TatC. Here, we show that the Tat machinery of the Gram-positive bacterium Bacillus subtilis is very different because it contains at least two minimal Tat translocases, each composed of one specific TatA and one specific TatC component. A third, TatB-like component is apparently not required.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2004
The transport of proteins from their site of synthesis in the cytoplasm to their functional location is an essential characteristic of all living cells. In Gram-positive bacteria the majority of proteins that are translocated across the cytoplasmic membrane are delivered to the membrane-cell wall interface in an essentially unfolded form. They must then be folded into their native configuration in an environment that is dominated by a high density of immobilised negative charge-in essence an ion exchange resin.
View Article and Find Full Text PDFProteins that are exported from the cytoplasm to the periplasm and outer membrane of Gram-negative bacteria, or the cell wall and growth medium of Gram-positive bacteria, are generally synthesized as precursors with a cleavable signal peptide. During or shortly after pre-protein translocation across the cytoplasmic membrane, the signal peptide is removed by signal peptidases. Importantly, pre-protein processing by signal peptidases is essential for bacterial growth and viability.
View Article and Find Full Text PDFMost bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre-AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre-)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis.
View Article and Find Full Text PDFThe Bacillus subtilis genome comprises two paralogous single-stranded DNA binding protein (SSB) genes, ssb and ywpH, which show distinct expression patterns. The main ssb gene is strongly expressed during exponential growth and is coregulated with genes encoding the ribosomal proteins S6 and S18. The gene organization rpsF-ssb-rpsR as observed in B.
View Article and Find Full Text PDFThe accumulation of malfolded proteins in the cell envelope of the Gram-positive eubacterium Bacillus subtilis was previously shown to provoke a so-called secretion stress response. In the present studies, proteomic approaches were employed to identify changes in the extracellular proteome of B. subtilis in response to secretion stress.
View Article and Find Full Text PDFIn mitochondria, chloroplasts, and Gram-negative eubacteria, Oxa1p(-like) proteins are critical for the biogenesis of membrane proteins. Here we show that the Gram-positive eubacterium Bacillus subtilis contains two functional Oxa1p orthologues, denoted SpoIIIJ and YqjG. The presence of either SpoIIIJ or YqjG is required for cell viability.
View Article and Find Full Text PDFBacillus subtilis uses two-component signal transduction systems to sense intra- and extracellular stimuli to adapt to fluctuating environmental situations. Regulator aspartate phosphatases (Raps) have important roles in these processes, as they can dephosphorylate certain response-regulators, and are themselves subject to cell-density-controlled inhibition by secreted Phr (phosphate regulator) peptides. Eleven chromosomal genes encode this family of phosphatases, but in addition, certain strains contain endogenous plasmids with genes for homologous Rap-Phr systems.
View Article and Find Full Text PDFBacteria need dedicated systems that allow appropriate adaptation to the perpetual changes in their environments. In Bacillus subtilis, two HtrA-like proteases, HtrA and HtrB, play critical roles in the cellular response to secretion and heat stresses. Transcription of these genes is induced by the high-level production of a secreted protein or by a temperature upshift.
View Article and Find Full Text PDFThe availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs.
View Article and Find Full Text PDFProtein secretion from Bacillus species is a major industrial production tool with a market of over $1 billion per year. However, standard export technologies, based on the well-characterised general secretory (Sec) pathway, are frequently inapplicable for the production of proteins. The recently discovered twin-arginine translocation (Tat) pathway offers additional potential to transport proteins.
View Article and Find Full Text PDFThiol-disulfide oxidoreductases are required for disulfide bond formation in proteins that are exported from the cytoplasm. Four enzymes of this type, termed BdbA, BdbB, BdbC, and BdbD, have been identified in the Gram-positive eubacterium Bacillus subtilis. BdbC and BdbD have been shown to be critical for the folding of a protein required for DNA uptake during natural competence.
View Article and Find Full Text PDFThe development of genetic competence in the Gram-positive eubacterium Bacillus subtilis is a complex postexponential process. Here we describe a new bicistronic operon, bdbDC, required for competence development, which was identified by the B. subtilis Systematic Gene Function Analysis program.
View Article and Find Full Text PDFThe Gram-positive eubacterium Bacillus subtilis contains five chromosomally encoded type I signal peptidases (SPases) for the processing of secretory pre-proteins. Even though four of these SPases, denoted SipS, SipT, SipU and SipV, are homologous to the unique SPase I of Escherichia coli, they are structurally different from that enzyme, being almost half the size and containing one membrane anchor instead of two. To investigate whether the unique membrane anchor of Bacillus SPases is required for in vitro activity, soluble forms of SipS of B.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2000
The growth and protein export defects of Escherichia coli secA51(Ts) strains can be suppressed by the CsaA protein of Bacillus subtilis. The present studies indicate that this effect can be attributed to chaperone-like activities of CsaA. First, CsaA stimulated protein export in secB, groES and dnaJ mutant strains of E.
View Article and Find Full Text PDFA 171812 bp nucleotide sequence between prkA and addAB (83 degrees to 97 degrees) on the genetic map of the Bacillus subtilis 168 chromosome was determined and analysed. An accurate physical/genetic map of this previously poorly described chromosomal region was constructed. One hundred and seventy open reading frames (ORFs) were identified on the DNA fragment.
View Article and Find Full Text PDF