Publications by authors named "Siennah R Miller"

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, -d-N-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier.

View Article and Find Full Text PDF
Article Synopsis
  • Equilibrative nucleoside transporters (ENTs) are important in how nucleoside analog drugs are absorbed and distributed in the body, with implications for treating diseases like cancer and viral infections.
  • The study created 3D models to better understand how different drugs interact with ENT1 and ENT2, revealing unique characteristics for substrates and inhibitors.
  • NBMPR, an ENT-specific inhibitor, significantly reduced the accumulation of drugs like mizoribine and ribavirin in cells, while darunavir showed limited interaction, helping to inform future drug development and selection processes.
View Article and Find Full Text PDF

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2.

View Article and Find Full Text PDF

The blood-testis barrier (BTB) formed by adjacent Sertoli cells (SCs) limits the entry of many chemicals into seminiferous tubules. Differences in rodent and human substrate-transporter selectivity or kinetics can misrepresent conclusions drawn using rodent in vitro models. Therefore, human in vitro models are preferable when studying transporter dynamics at the BTB.

View Article and Find Full Text PDF

Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is the rapid loss of renal function after an insult, and renal proximal tubule cells (RPTCs) are central to the pathogenesis of AKI. The -adrenergic receptor ( AR) agonist formoterol accelerates the recovery of renal function in mice after ischemia-reperfusion injury (IRI) with associated rescue of mitochondrial proteins; however, the cell type responsible for this recovery remains unknown. The role of RPTCs in formoterol-induced recovery of renal function was assessed in a proximal tubule-specific knockout of the AR (GT-Cre:ADRB2).

View Article and Find Full Text PDF

The blood-testis barrier protects developing germ cells by limiting the entry of xenobiotics into the adluminal compartment. There is strong evidence that the male genital tract can serve as a sanctuary site, an area of the body where tumors or viruses are able to survive treatments because most drugs are unable to reach therapeutic concentrations. Recent work has classified the expression and localization of endogenous transporters in the male genital tract as well as the discovery of a transepithelial transport pathway as the molecular mechanism by which nucleoside analogs may be able to circumvent the blood-testis barrier.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlnahccg8dve3afuko7pfvne5c2jqg7hh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once