Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic.
View Article and Find Full Text PDFCirculating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR) are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus), zebra finch (Taenopygia guttata), and ochre-bellied flycatcher (Mionectes oleagieus). Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2011
Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS.
View Article and Find Full Text PDFEstrogens act upon nuclear estrogen receptors (ER) to ameliorate cell-mediated autoimmune disease. As most immunomodulatory effects of estrogens in EAE have been attributed to the function of ER-α, we previously demonstrated that ER-β ligand treatment reduced disease severity without affecting peripheral cytokine production or levels of CNS inflammation, suggesting a direct neuroprotective effect; however, the effect of ER-β treatment on the function of immune cells within the target organ remained unknown. Here, we used adoptive transfer studies to show that ER-β ligand treatment was protective in the effector, but not the induction phase of EAE, as shown by decreased clinical disease severity with the preservation of axons and myelin in spinal cords.
View Article and Find Full Text PDFThe pathological and radiological hallmarks of multiple sclerosis (MS) include multiple demyelinated lesions disseminated throughout the white matter of the central nervous system (CNS). More recently, the cerebral cortex has been shown to be affected in MS, but the elucidation of events causing cortical demyelination has been hampered by the lack of animal models reflecting such human cortical pathology. In this report, we have described the presence of cortical gray matter and callosal white matter demyelinating lesions in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS.
View Article and Find Full Text PDFWe studied the effects of combination treatment with an anti-inflammatory agent, interferon (IFN)-beta, and a putative neuroprotective agent, an estrogen receptor (ER)-beta ligand, during EAE. Combination treatment significantly attenuated EAE disease severity, preserved axonal densities in spinal cord, and reduced CNS inflammation. Combining ERbeta treatment with IFNbeta reduced IL-17, while it abrogated IFNbeta-mediated increases in Th1 and Th2 cytokines from splenocytes.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) have a crucial function in migration of inflammatory cells into the central nervous system (CNS). Levels of MMP-9 are elevated in multiple sclerosis (MS) and predict the occurrence of new active lesions on magnetic resonance imaging (MRI). This translational study aims to determine whether in vivo treatment with the pregnancy hormone estriol affects MMP-9 levels from immune cells in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDFMost autoimmune diseases are more common in women than in men. This may be caused by differences in sex hormones, sex chromosomes, or both. In this study, we determined if there was a contribution of sex chromosomes to sex differences in susceptibility to two immunologically distinct disease models, experimental autoimmune encephalomyelitis (EAE) and pristane-induced lupus.
View Article and Find Full Text PDFBoth spontaneous and chemically induced rodent models of autoimmune nephritis and autoantibody production have been explored to understand mechanisms involved in human systemic lupus erythematosus (SLE). While it has been known for decades that women are more susceptible than men to SLE, mechanisms underlying this female preponderance remain unclear. One chemically induced model involves injection of hydrocarbon oils such as pristane into otherwise normal mouse strains, which results in the development of autoantibodies and inflammation in organs such as kidney and liver.
View Article and Find Full Text PDF