Publications by authors named "Sieh S"

Despite declaration as a national priority disease, dog rabies remains endemic in Liberia, with surveillance systems and disease control activities still developing. The objective of these initial efforts was to establish animal rabies diagnostics, foster collaboration between all rabies control stakeholders, and develop a short-term action plan with estimated costs for rabies control and elimination in Liberia. Four rabies diagnostic tests, the direct fluorescent antibody (DFA) test, the direct immunohistochemical test (dRIT), the reverse transcriptase polymerase chain reaction (RT-PCR) assay and the rapid immunochromatographic diagnostic test (RIDT), were implemented at the Central Veterinary Laboratory (CVL) in Monrovia between July 2017 and February 2018.

View Article and Find Full Text PDF

Background: Liberia faces a critical shortage of palliative care services, particularly for persons with advanced-stage HIV/AIDS, tuberculosis, diabetes, and cancers. Access to healthcare services is especially limited in rural areas, along with a lack of supportive social and economic resources. Home of Dignity (HoD) Health Center was established in 2013 in Yarbah's Town to fill a last-option palliative care gap.

View Article and Find Full Text PDF

Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the "cross-talk" between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs).

View Article and Find Full Text PDF

The severe epidemic of Ebola virus disease in Liberia started in March 2014. On May 9, 2015, the World Health Organization declared Liberia free of Ebola, 42 days after safe burial of the last known case-patient. However, another 6 cases occurred during June-July; on September 3, 2015, the country was again declared free of Ebola.

View Article and Find Full Text PDF

A suspected case of sexual transmission from a male survivor of Ebola virus disease (EVD) to his female partner (the patient in this report) occurred in Liberia in March 2015. Ebola virus (EBOV) genomes assembled from blood samples from the patient and a semen sample from the survivor were consistent with direct transmission. The genomes shared three substitutions that were absent from all other Western African EBOV sequences and that were distinct from the last documented transmission chain in Liberia before this case.

View Article and Find Full Text PDF

As one of the three West African countries highly affected by the 2014-2015 Ebola virus disease (Ebola) epidemic, Liberia reported approximately 10,000 cases. The Ebola epidemic in Liberia was marked by intense urban transmission, multiple community outbreaks with source cases occurring in patients coming from the urban areas, and outbreaks in health care facilities (HCFs). This report, based on data from routine case investigations and contact tracing, describes efforts to stop the last known chain of Ebola transmission in Liberia.

View Article and Find Full Text PDF

On March 20, 2015, 30 days after the most recent confirmed Ebola Virus Disease (Ebola) patient in Liberia was isolated, Ebola was laboratory confirmed in a woman in Monrovia. The investigation identified only one epidemiologic link to Ebola: unprotected vaginal intercourse with a survivor. Published reports from previous outbreaks have demonstrated Ebola survivors can continue to harbor virus in immunologically privileged sites for a period of time after convalescence.

View Article and Find Full Text PDF

As microenvironmental factors such as three-dimensionality and cell-matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells.

View Article and Find Full Text PDF

Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone.

View Article and Find Full Text PDF
Article Synopsis
  • Stromal-epithelial cell interactions are crucial in cancer, making the tumor stroma a potential target for therapy.
  • The study used a bioengineered microenvironment with human prostatic tissues to analyze how cancer-associated fibroblasts (CAFs) influence non-tumorigenic BPH-1 epithelial cells compared to non-malignant prostatic fibroblasts (NPFs).
  • Co-culturing BPH-1 cells with CAFs led to a more invasive and mobile cell phenotype, indicating that tumor stroma significantly affects prostate cancer progression, regardless of the aggressiveness of the tumor type.
View Article and Find Full Text PDF

Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density.

View Article and Find Full Text PDF

Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology.

View Article and Find Full Text PDF

Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours.

View Article and Find Full Text PDF

Many applications of human embryonic stem cells (hESCs) will require fully defined growth and differentiation conditions including media devoid of fetal calf serum. To identify factors that control lineage differentiation we have analyzed a serum-free (SF) medium conditioned by the cell line END2, which efficiently induces hESCs to form cardiomyocytes. Firstly, we noted that insulin, a commonly used medium supplement, acted as a potent inhibitor of cardiomyogenesis in multiple hESC lines and was rapidly cleared by medium conditioning.

View Article and Find Full Text PDF

Human embryonic stem cells (hESC) can differentiate to cardiomyocytes in vitro but with generally poor efficiency. Here, we describe a novel method for the efficient generation of cardiomyocytes from hESC in a scalable suspension culture process. Differentiation in serum-free medium conditioned by the cell line END2 (END2-CM) readily resulted in differentiated cell populations with more than 10% cardiomyocytes without further enrichment.

View Article and Find Full Text PDF

History And Clinical Findings: A 21-year-old man was admitted twice within half-a-year because of fatigue and increasing dyspnoea. Both times the chest x-ray showed extensive pulmonary infiltrates. Clinical remission occurred within a few days of starting antibiotic treatment.

View Article and Find Full Text PDF

This study examined students' and faculty's perceptions of important characteristics of associate degree clinical teachers. Differences in perceptions were compared. Perceptions were measured using the Nursing Clinical Teacher Effectiveness Inventory.

View Article and Find Full Text PDF