The prolactin receptor (PRLR) has been implicated in a variety of physiological processes (lactation, reproduction) and diseases (breast cancer, autoimmune diseases). Prolactin synthesis in the pituitary and extrapituitary sites is regulated by different promoters. Dopamine receptor agonists such as bromocriptine can only interfere with pituitary prolactin synthesis and thus do not induce a complete blockade of PRLR signaling.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2007
J Steroid Biochem Mol Biol
May 2007
The androgen receptor (AR) is a ligand-dependent transcriptional regulator which belongs to the nuclear receptor superfamily. The basal transcriptional activity of the androgen receptor is regulated by interaction with coactivator or corepressor proteins. The exact mechanism whereby comodulators influence target gene transcription is only partially understood, especially for corepressors.
View Article and Find Full Text PDFArch Biochem Biophys
April 2007
Evidence is accumulating in support of the view that tissue-specific effects of steroid hormones depend on the recruitment of nuclear receptor comodulator proteins. The latter interact directly with the hormone receptors and modify their transcriptional effects on specific target genes. The mechanisms of comodulator influence on nuclear receptor-controlled gene transcription is only partially understood.
View Article and Find Full Text PDFThe transcription-intermediary-factor-2 (TIF-2) is a coactivator of the glucocorticoid receptor (GR), and its disruption would be expected to influence glucocorticoid-mediated control of the hypothalamo-pituitary-adrenal (HPA) axis. Here, we show that its targeted deletion in mice is associated with altered expression of several glucocorticoid-dependent components of HPA regulation (e.g.
View Article and Find Full Text PDFThe regional distribution, developmental profiles, and gonadectomy- and estrogen-induced changes in the density of transcripts encoding the steroid receptor coactivator-1 (SRC-1) were examined in the female rat brain by semiquantitative in situ hybridization. The results demonstrate striking differences in the abundance of SRC-1 mRNA in discrete brain regions throughout ontogeny. Whereas transcript densities gradually decreased with age in the cerebral cortex, they peaked prominently during the peripubertal period in the hypothalamic medial preoptic area (MPOA) and ventromedial nucleus (VMN).
View Article and Find Full Text PDF