Publications by authors named "Siegfried Weber"

Background: The correct injection technique is crucial for people with insulin therapy. However, barriers to insulin injections exist, which can lead to problems with injections. In addition, injection behavior may deviate from recommendations leading to lower adherence to the correct injection technique.

View Article and Find Full Text PDF

High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain.

View Article and Find Full Text PDF

A recombinant Newcastle disease virus (NDV) expressing H6 hemagglutinin (HA) of a low pathogenic avian influenza virus (LPAIV) was generated by reverse genetics (NDVH6). The H6 open reading frame was inserted as an additional transcription unit between the fusion and hemagglutinin-neuraminidase (HN) gene of lentogenic NDV clone 30. Expression of the foreign gene was demonstrated by northern blot, western blot, and indirect immunofluorescence analyses.

View Article and Find Full Text PDF

The prime virulence determinant of highly pathogenic avian influenza viruses (HPAIVs) is the polybasic haemagglutinin (HA) cleavage site. However, engineering of a polybasic cleavage site into an avian influenza virus of low pathogenicity does not result in transformation into an HPAIV, indicating the importance of other adaptations. Here, the influence of amino acids adjacent to the HA cleavage site on virulence was studied.

View Article and Find Full Text PDF

Highly pathogenic avian influenza viruses (HPAIV) differ from all other strains by a polybasic cleavage site in their hemagglutinin. All these HPAIV share the H5 or H7 subtype. In order to investigate whether the acquisition of a polybasic cleavage site by an avirulent avian influenza virus strain with a hemagglutinin other than H5 or H7 is sufficient for immediate transformation into an HPAIV, we adapted the hemagglutinin cleavage site of A/Duck/Ukraine/1/1963 (H3N8) to that of the HPAIV A/Chicken/Italy/8/98 (H5N2), A/Chicken/HongKong/220/97 (H5N1), or A/Chicken/Germany/R28/03 (H7N7) and generated the recombinant wild-type and cleavage site mutants.

View Article and Find Full Text PDF

Reverse genetics has become pivotal in influenza virus research relying on rapid generation of tailored recombinant influenza viruses. They are rescued from transfected plasmids encoding the eight influenza virus gene segments, which have been cloned using restriction endonucleases and DNA ligation. However, suitable restriction cleavage sites often are not available.

View Article and Find Full Text PDF

Analysis of the full-length sequences of all eight segments of the German wild-bird H5N1 highly pathogenic avian influenza virus index isolate, A/Cygnus cygnus/Germany/R65/2006, and an H5N1 isolate from a cat (A/cat/Germany/R606/2006) obtained during an outbreak in February 2006 revealed a very high similarity between these two sequences. One amino acid substitution in the PA gene, encoding a protein involved in virus RNA replication, and one amino acid substitution in the haemagglutinin (HA) protein were observed. Phylogenetic analyses of the HA and neuraminidase nucleotide sequences showed that avian influenza H5N1 isolates from the Astrakhan region located in southern Russia were the closest relatives.

View Article and Find Full Text PDF

Infectious pancreatic necrosis virus (IPNV), a member of the BIRNAVIRIDAE: with two double-stranded RNA genome segments, encodes five proteins designated VP1 to VP5. To study the function of the 17 kDa nonstructural protein VP5 during virus replication several mutated IPNV genome segments A were constructed and included in a reverse genetics system for IPNV to obtain recombinant virus. Mutations between nt 68 and 85 or nt 94 and 103 in the noncoding region failed to yield viable virus.

View Article and Find Full Text PDF