The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses.
View Article and Find Full Text PDFBackground: High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys.
Methods: Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it.
Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer.
View Article and Find Full Text PDFThe T-T photodimerization paths leading to the formation of cyclobutane pyrimidine dimer (CPD) and 6-4 pyrimidine pyrimidone (64-PP), the two main DNA photolesions, have been resolved for a T-T step in a DNA duplex by two complementary state-of-the-art quantum mechanical approaches: QM(CASPT2//CASSCF)/MM and TD-DFT/PCM. Based on the analysis of several different representative structures, we define a new-ensemble of cooperating geometrical and electronic factors (besides the distance between the reacting bonds) ruling T-T photodimerization in DNA. CPD is formed by a barrierless path on an exciton state delocalized over the two bases.
View Article and Find Full Text PDFMolecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.
View Article and Find Full Text PDFDeactivation routes of bright ππ* (La) and excimer charge transfer (CT) states have been mapped for two stacked quantum mechanical (CASPT2//CASSCF) adenines inside a solvated DNA double strand decamer (poly(dA)·poly(dT)) described at the molecular mechanics level. Calculations show that one carbon (C2) puckering is a common relaxation coordinate for both the La and CT paths. By mapping the lowest crossing regions between La and CT states, together with the paths connecting the two states, we conclude that at least one CT state can be easily accessible.
View Article and Find Full Text PDFFour different force fields are examined for dynamic characteristics using cholesterol as a case study. The extent to which various types of internal degrees of freedom become thermodynamically relevant is evaluated by means of principal component analysis. More complex degrees of freedom (angle bending, dihedral rotations) show a trend towards force field independence.
View Article and Find Full Text PDFElectron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem.
View Article and Find Full Text PDFAntifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface.
View Article and Find Full Text PDFThe WHO has listed Alzheimer's disease among the major neurological disorders with an estimated 35 million people affected worldwide. Amyloid-β is mostly believed to be the causative factor in Alzheimer's disease and the severity of the disease correlates with the tendency of amyloid-β to form aggregation patterns-plaques. Lacking effective medication, the identification of any underlying mechanistic principles regarding plaque formation appears to be crucial.
View Article and Find Full Text PDFA limited class of aquaporins has been described to form regular arrays and junctions in membranes. The biological significance of these structures, however, remains uncertain. Here we analyze the underlying physical principles with the help of a computational procedure that takes into account protein-protein as well as protein-membrane interactions.
View Article and Find Full Text PDFCarbon nanotubes have been proposed to serve as nano-vehicles to deliver genetic or therapeutic material into the interior of cells because of their capacity to cross the cell membrane. A detailed picture of the molecular mode of action of such a delivery is, however, difficult to obtain because of the concealing effects of the cell membrane. Here we report a systematic computational study of membrane insertion of individual carbon nanotubes and carbon nanotube bundles using two entirely different and unrelated techniques.
View Article and Find Full Text PDFThe study of membrane proteins requires a proper consideration of the specific environment provided by the biomembrane. The compositional complexity of this environment poses great challenges to all experimental and theoretical approaches. In this article a rather simple theoretical concept is discussed for its ability to mimic the biomembrane.
View Article and Find Full Text PDFScientific applications do frequently suffer from limited compute performance. In this article, we investigate the suitability of specialized computer chips to overcome this limitation. An enhanced Poisson Boltzmann program is ported to the graphics processing unit and the application specific integrated circuit MDGRAPE-3 and resulting execution times are compared to the conventional performance obtained on a modern central processing unit.
View Article and Find Full Text PDFWe implement a well-established concept to consider dispersion effects within a Poisson-Boltzmann approach of continuum solvation of proteins. The theoretical framework is particularly suited for boundary element methods. Free parameters are determined by comparison to experimental data as well as high-level quantum mechanical reference calculations.
View Article and Find Full Text PDFParallel temperature molecular dynamics simulations are used to explore the folding of a signal peptide, a short but functionally independent domain at the N-terminus of proteins. The peptide has been analyzed previously by NMR, and thus a solid reference state is provided with the experimental structure. Particular attention is paid to the role of water considered in full atomic detail.
View Article and Find Full Text PDFWe describe a three-stage procedure to analyze the dependence of Poisson Boltzmann calculations on the shape, size and geometry of the boundary between solute and solvent. Our study is carried out within the boundary element formalism, but our results are also of interest to finite difference techniques of Poisson Boltzmann calculations. At first, we identify the critical size of the geometrical elements for discretizing the boundary, and thus the necessary resolution required to establish numerical convergence.
View Article and Find Full Text PDFClass I cytokine receptors efficiently transfer activation signals from the extracellular space to the cytoplasm and play a dominant role in growth control and differentiation of human tissues. Although a significant body of literature is devoted to this topic, a consistent mechanistic picture for receptor activation in the membrane environment is still missing. Using the interleukin-4 receptor (IL-4R) as an example, we propose that the membrane-proximal stem-loop of the extracellular domains contains pivotal elements of a rotational switch.
View Article and Find Full Text PDFA high level polarizable force field is used to study the temperature dependence of hydrophobic hydration of small-sized molecules from computer simulations. Molecular dynamics (MD) simulations of liquid water at various temperatures form the basis of free energy perturbation calculations that consider the onset and growth of a repulsive sphere. This repulsive sphere acts as a model construct for the hydrophobic species.
View Article and Find Full Text PDFCerK (ceramide kinase) produces ceramide 1-phosphate, a sphingophospholipid with recognized signalling properties. It localizes to the Golgi complex and fractionates essentially between detergent-soluble and -insoluble fractions; however, the determinants are unknown. Here, we made a detailed mutagenesis study of the N-terminal PH domain (pleckstrin homology domain) of CerK, based on modelling, and identified key positively charged amino acid residues within an unusual motif in the loop interconnecting beta-strands 6 and 7.
View Article and Find Full Text PDFThis tutorial review compares models that describe DeltaG(cavitation). Their qualitative agreement suggests the use of the simple, time-honored Pierotti equation. Its coefficients, fine-tuned with atomistic simulations, give a revised Pierotti approach, rPA.
View Article and Find Full Text PDFJ Comput Chem
August 2005
The accurate description of solvation effects is highly desirable in numerous computational chemistry applications. One widely used methodology treats the solvent as a uniform continuum ("implicit solvation"), and describes its net interaction with the solute by solving the Poisson-Boltzmann (PB) equation using the Boundary Element Method (BEM). These calculations are very time consuming using conventional computers.
View Article and Find Full Text PDFWe use molecular dynamics to simulate the collapse of nanobubbles in water and show that the macroscopic description holds down to the nanometer size. We further give a description of the collapse in terms of stochastic growth of the density of water inside the cavity. Finally, we address the energy variation in time of the collapse in very simple terms.
View Article and Find Full Text PDFFree-energy-perturbation theory from molecular dynamics calculations has been used to obtain the DeltaG of adjoining cavities' formation in water. The DeltaGs for systems with three, five and seven cavities are compared with that of a single cavity of the same volume, and found to be in good agreement. The conditions under which the analytical formulation of the energy of cavity formation proposed by Pierotti holds are discussed.
View Article and Find Full Text PDF