Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions.
View Article and Find Full Text PDFThe development of low-cost, efficient physisorbents is essential for gas adsorption and separation; however, the intrinsic tradeoff between capacity and selectivity, as well as the unavoidable shaping procedures of conventional powder sorbents, greatly limits their practical separation efficiency. Herein, an exceedingly stable iron-containing mordenite zeolite monolith with a pore system of precisely narrowed microchannels was self-assembled using a one-pot template- and binder-free process. Iron-containing mordenite monoliths that could be used directly for industrial application afforded record-high volumetric carbon dioxide uptakes (293 and 219 cubic centimeters of carbon dioxide per cubic centimeter of material at 273 and 298 K, respectively, at 1 bar pressure); excellent size-exclusive molecular sieving of carbon dioxide over argon, nitrogen, and methane; stable recyclability; and good moisture resistance capability.
View Article and Find Full Text PDFDespite the enormous research efforts in recent years regarding lignin depolymerisation and functionalisation, few commercial products are available. This review provides a summary and viewpoint of extensive research in the lignin-to-product valorisation chain, with an emphasis on downstream processing of lignin derived feedstock into end products. It starts with an introduction of available platform chemicals and polymeric derivatives generated from lignin via existing depolymerisation and functionalisation technologies.
View Article and Find Full Text PDF