Publications by authors named "Sidyelyeva G"

Neuropeptide Y (NPY) is an endogenous modulator of neuronal activity affecting both GABAergic and glutamatergic transmission. Previously, we found that oestradiol modifies the number of NPY immunoreactive neurones in the hippocampal dentate gyrus. In the present study, we investigated which oestrogen receptor type is responsible for these changes in the number of NPY-positive neurones.

View Article and Find Full Text PDF

Idiopathic generalized epilepsy represents about 30-35% of all epilepsies in humans. The bromodomain BRD2 gene has been repeatedly associated with the subsyndrome of juvenile myoclonic epilepsy (JME). Our previous work determined that mice haploinsufficient in Brd2 (Brd2+/-) have increased susceptibility to provoked seizures, develop spontaneous seizures and have significantly decreased gamma-aminobutyric acid (GABA) markers in the direct basal ganglia pathway as well as in the neocortex and superior colliculus.

View Article and Find Full Text PDF

Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction.

View Article and Find Full Text PDF

Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1-3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svr (PG33) mutant.

View Article and Find Full Text PDF

Carboxypeptidase D (CPD) functions in the processing of proteins and peptides in the secretory pathway. Drosophila CPD is encoded by the silver gene (svr), which is differentially spliced to produce long transmembrane protein forms with three metallocarboxypeptidase (CP)-like domains and short soluble forms with a single CP domain. Many svr mutants have been reported, but the precise molecular defects have not been previously determined.

View Article and Find Full Text PDF

Metallocarboxypeptidase D (CPD), is a 180-kDa protein that contains three carboxypeptidase-like domains, a transmembrane domain, and a cytosolic tail and which functions in the processing of proteins that transit the secretory pathway. An initial report on the Drosophila melanogaster silver gene indicated a CPD-like protein with only two and a half carboxypeptidase-like domains with no transmembrane region (Settle, S. H.

View Article and Find Full Text PDF