This study focuses on the synthesis of silver nanoparticles (AgNPs) using the extract of leaves. The extraction was done using maceration at room temperature in water for 48 h. The synthesized nanoparticles were characterized by IR, XRD, TEM, and SEM.
View Article and Find Full Text PDFThe purpose of this study was to develop Pickering water-in-oil nano-emulsions only stabilized by Eudragit RL100 nanoparticles (NPs), in order to increase the nano-emulsion stability and create a barrier to improve the drug encapsulation and better control the drug release. The first part of this study was dedicated to investigating the nano-emulsion formulation by ultrasonication and understanding the interfacial behavior and role of NPs in the stabilization of the water/oil interface. The focus was on the surface coverage in the function of the formulation parameters (volume fractions) to disclose the extents and limitations of the process.
View Article and Find Full Text PDFCorrection for 'Pickering nano-emulsions stabilized by solid lipid nanoparticles as a temperature sensitive drug delivery system' by Sidy Mouhamed Dieng et al., Soft Matter, 2019, DOI: 10.1039/c9sm01283d.
View Article and Find Full Text PDFThe development of biomaterials with low environmental impact has seen increased interest in recent years. In this field, lipid nanoparticles have found a privileged place in research and industry. The purpose of this study was to develop Pickering O/W nano-emulsions only stabilized by solid lipid nanoparticles (SLNs), as a new generation of safe, non-toxic, biocompatible, and temperature-sensitive lipid nano-carriers.
View Article and Find Full Text PDFThis study investigates the formulation of surfactant-free Pickering nano-emulsions able to release a drug at specific pH, in order to enhance its oral bioavailability. The stabilizing nanoparticles composed of magnesium hydroxide, were obtained by nano-precipitation method. The oil-in-water Pickering nano-emulsions stabilized with Mg(OH) nanoparticles, and encapsulating a model of hydrophobic drug (ibuprofen) were formulated following a high-energy process, using a sonication probe.
View Article and Find Full Text PDFEfficiency of drug administration is related to the inhibition of adverse effects, and can be improved by drug targeting through lipid nanocarriers encapsulation. Targeting technology generally goes along with the nanocarrier functionalization that can be surface modification and/or ligand grafting. The great advantage of nanoemulsions is their loading capability and the possibilities to encapsulate several entities in a single droplet, however, the decoration of the lipid droplets with strongly anchored reactive functions is challenging.
View Article and Find Full Text PDF