Publications by authors named "Sidorenko A"

Thanks to their simple synthesis, controlled physical properties, and minimal toxicity, iron oxide nanoparticles (FeO NPs) are widely used in many biomedical applications (e.g., bioimaging, drug delivery, biosensors, diagnostics, and theranostics).

View Article and Find Full Text PDF

In this work kaolinite nanotubes (KNT) were obtained from commercial kaolin AKF-78 (Uzbekistan) by starting material sequential intercalation by DMSO and methanol, followed by treatment with a cetyltrimethylammonium chloride solution. Acid functionalization of KNT for catalytic applications was successfully performed for the first time using a two-step treatment with piranha solution (HSO-HO), which resulted in the removal of organic impurities as synthetic artifacts and an increase in specific surface area by 3.9 times (up to 159 m g), pore volume by 1.

View Article and Find Full Text PDF
Article Synopsis
  • * This study explores reactions between salicylic aldehydes and a specific monoterpene derivative, resulting in various chiral polycyclic products, with some being novel ring structures.
  • * The results indicate that the type of acid catalyst used and the reaction conditions significantly influence the product outcomes, and the study includes detailed mechanistic insights supported by experimental and computational methods.
View Article and Find Full Text PDF

In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles.

View Article and Find Full Text PDF

Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites.

View Article and Find Full Text PDF

We consider properties of dichroic antenna arrays on a silicon substrate with integrated cold-electron bolometers to detect radiation at frequencies of 210 and 240 GHz. This frequency range is widely used in cosmic microwave background experiments in space, balloon, and ground-based missions such as BICEP Array, LSPE, LiteBIRD, QUBIC, Simons Observatory, and AliCPT. As a direct radiation detector, we use cold-electron bolometers, which have high sensitivity and a wide operating frequency range, as well as immunity to spurious cosmic rays.

View Article and Find Full Text PDF

Skin, characterized by its distinctive gradient structure and interwoven fibers, possesses remarkable mechanical properties and highly sensitive attributes, enabling it to detect an extensive range of stimuli. Inspired by these inherent qualities, a pioneering approach involving the crosslinking of macromolecules through in situ electron beam irradiation (EBI) is proposed to fabricate gradient ionogels. Such a design offers remarkable mechanical properties, including excellent tensile properties (>1000%), exceptional toughness (100 MJ m), fatigue resistance, a broad temperature range (-65-200°C), and a distinctive gradient modulus change.

View Article and Find Full Text PDF

Volatility and uncertainty of today's value chains along with the market's demands for low-batch customized products mandate production systems to become smarter and more resilient, dynamically and even autonomously adapting to both external and internal disturbances. Such resilient behavior can be partially enabled by highly interconnected Cyber-Physical Production Systems (CPPS) incorporating advanced Artificial Intelligence (AI) technologies. Multi-agent solutions can provide better planning and control, improving flexibility and responsiveness in production systems.

View Article and Find Full Text PDF

Infections caused by multidrug-resistant Gram-negative bacteria have been named one of the most urgent global health threats due to antimicrobial resistance. Considerable efforts have been made to develop new antibiotic drugs and investigate the mechanism of resistance. Recently, Anti-Microbial Peptides (AMPs) have served as a paradigm in the design of novel drugs that are active against multidrug-resistant organisms.

View Article and Find Full Text PDF

The present paper considers a mathematical model describing the time evolution of spin states and magnetic properties of a nanomaterial. We present the results of two variants of nanosystem simulations. In the first variant, cobalt with a structure close to the hexagonal close-packed crystal lattice was considered.

View Article and Find Full Text PDF

A vascular system in plants is a product of aromorphosis that enabled them to colonize land because it delivers water, mineral and organic compounds to plant organs and provides effective communications between organs and mechanical support. Vascular system development is a common object of fundamental research in plant development biology. In the model plant Arabidopsis thaliana, early stages of vascular tissue formation in the root are a bright example of the self-organization of a bisymmetric (having two planes of symmetry) pattern of hormone distribution, which determines vascular cell fates.

View Article and Find Full Text PDF

Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (D = 1125.

View Article and Find Full Text PDF

The hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron.

View Article and Find Full Text PDF

Employment of the non-trivial proximity effect in superconductor/ferromagnet (S/F) heterostructures for the creation of novel superconducting devices requires accurate control of magnetic states in complex thin-film multilayers. In this work, we study experimentally in-plane transport properties of microstructured Nb/Co multilayers. We apply various transport characterization techniques, including magnetoresistance, Hall effect, and the first-order-reversal-curves (FORC) analysis.

View Article and Find Full Text PDF

COordinated Responsive Arrays of Surface-Linked polymer islands (CORALS) allow for the creation of molecular surfaces with novel and switchable properties. Critical components of CORALs are the uniformly distributed islands of densely grafted polymer chains (nanoislands) separated by regions of bare surface. The grafting footprint and separation distances of nanoislands are comparable to that of the constituent polymer chains themselves.

View Article and Find Full Text PDF

Some of the highest-transition-temperature superconductors across various materials classes exhibit linear-in-temperature 'strange metal' or 'Planckian' electrical resistivities in their normal state. It is thus believed by many that this behavior holds the key to unlock the secrets of high-temperature superconductivity. However, these materials typically display complex phase diagrams governed by various competing energy scales, making an unambiguous identification of the physics at play difficult.

View Article and Find Full Text PDF

The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments.

View Article and Find Full Text PDF

This work is a study of the formation processes and the effect of related process parameters of multilayer nanosystems and devices for spintronics. The model system is a superconducting spin valve, which is a multilayer structure consisting of ferromagnetic cobalt nanolayers separated by niobium superconductor nanolayers. The aim was to study the influence of the main technological parameters including temperature, concentration and spatial distribution of deposited atoms over the nanosystem surface on the atomic structure and morphology of the nanosystem.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the proximity effect in superconductor/ferromagnetic superlattices, focusing on how variations in ferromagnetic layer thickness and coercive fields affect superconductivity.
  • Using the Usadel equations, the study identifies conditions under which the magnetic alignment of adjacent ferromagnetic layers leads to significant changes in the superconducting order parameter.
  • Experimental observations show that the resistive transition of a Nb/Co multilayer exhibits multiple steps, indicating that local magnetization affects superconductive behavior, suggesting potential applications in tunable kinetic inductors for artificial neural networks.
View Article and Find Full Text PDF

We have investigated the structural, magnetic and superconduction properties of [Nb(1.5 nm)/Fe()] superlattices deposited on a thick Nb(50 nm) layer. Our investigation showed that the Nb(50 nm) layer grows epitaxially at 800 °C on the AlO(1-102) substrate.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered two new types of TDP1 inhibitors that can effectively inhibit the TDP1 enzyme, crucial for DNA repair, at low concentrations, with the strongest compound showing an IC value of 0.65 μM.
  • The inhibitors were synthesized from monoterpene compounds and they demonstrated a synergistic effect when tested with the cancer drug topotecan in HEK293FT cells with functional TDP1.
  • This synergy suggests that using non-toxic inhibitors alongside existing cancer therapies can improve treatment effectiveness while minimizing harmful side effects.
View Article and Find Full Text PDF

Hybrid molecular brushes (HMBs) are macromolecular constructs made up of a backbone polymer and side-chain polymers with distinct properties. They adapt to a changing microenvironment via the conformational mechanism and thus may affect mammalian cell proliferation. Two biobenign HMBs were synthesized in this work: (1) polylactide (PLA) grafted to the chitosan (CHI) backbone to form chitosan--polylactide (CHI--PLA), a two-component molecular brush, and (2) poly(-vinyl pyrrolidone) (PNVP) grafted to chitosan moieties of CHI-PLA to form a three-component HMB.

View Article and Find Full Text PDF

Never before in history, aging was such a significant factor for epidemics as it is now for the current COVID-19 pandemic, which features a drastic shift of mortality towards older ages. Our analysis of data on COVID-19-related mortality in Spain, Italy, and Sweden has shown that, in the range of 30 to 90 years of age, each dependency of the logarithm of mortality upon age is linear, and all regression lines are strictly parallel to those related to the total mortality in accordance with the Gompertz law. In all cases, irrespective of the stage and place of epidemic, mortality doubling time in this age range is close to 7,5 years.

View Article and Find Full Text PDF