Publications by authors named "Sidney Yang"

Article Synopsis
  • Researchers used 18 femtosecond laser pulses at 820 nm to perform Z-scan measurements on carbon disulfide (CS2), focusing on the effects of pulse timing and separation.
  • They found that the negative nonlinear refraction in CS2 increased with time relative to the pulse train, especially within the thermal diffusivity time constant.
  • The study challenges the traditional view of how heat is generated in CS2, suggesting that non-radiative relaxation from individual laser pulses, rather than multi-photon excitation, is responsible for the observed thermal lensing effect.
View Article and Find Full Text PDF

The transmittive and reflective Z-scan technique is used with a 10 Hz, frequency doubled, Q-switched, and mode-locked Nd:YAG laser to verify that the reflectivity of the super-resolution near-field structure of an SiN/Sb/SiN thin film increases as incident intensity decreases. This intensity-dependent reflection, called nonlinear reflection, reflects a TEM(00) mode laser beam more strongly at its periphery than at its center and so shrinks the transmitted laser beam. The observed nonlinear reflection is attributed to laser-induced change of carrier densities in Sb, to justify quantitatively the experimental results.

View Article and Find Full Text PDF

We report a unique spectral narrowing and manipulation technique in an optical parametric oscillator (OPO) realized by an integrated periodically poled lithium niobate comprising an optical parametric gain medium sandwiched by two electro-optic polarization-mode converters (EO PMCs). We achieved a manipulation of the gain spectrum of the OPO via EO and/or temperature control of the EO PMCs, in which we obtained single to multiple signal spectral peaks from the OPO with a spectral width reduced by up to 10 times and peak intensity increased by up to 6 times in comparison with the original signal. Fast EO tuning of the narrowed signal spectral peak has also been demonstrated.

View Article and Find Full Text PDF

Using the Z-scan technique with 532 nm 16 picosecond laser pulses, we observe reverse saturable absorption and positive nonlinear refraction of toluene solutions of both C(60) and C(70). By deducting the positive Kerr nonlinear refraction of the solvent, we notice that the solute molecules contribute to nonlinear refraction of opposite signs: positive for C(60) and negative for C(70). Attributing nonlinear absorption and refraction of both solutes to cascading one-photon excitations, we illustrate that they satisfy the Kramers-Kronig relation.

View Article and Find Full Text PDF

Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)(3))(2), SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption.

View Article and Find Full Text PDF

Transition from reverse-saturable absorption to saturable absorption of the chloroaluminum phthalocyanine solution excited by a giant laser pulse is ascribed not just to the saturation of excited state absorption, but also to the outward migration of the solute molecules at the laser beam center. While the saturation of excited state absorption occurs within a single picosecond laser pulse, the beam center population decrease is sustained much longer than the pulse duration. We distinguish these two mechanisms with the Z-scan technique, utilizing picosecond pulses with pulse-to-pulse separations ranging from 0.

View Article and Find Full Text PDF