Yttrium-90 (Y) microspheres are widely used for the treatment of liver-dominant malignant tumors. They are infused via catheter into the hepatic artery branches supplying the tumor under fluoroscopic guidance based on pre-therapy angiography and Technetium-99m macroaggregated albumin (Tc-MAA) planning. However, at present, these microspheres are suspended in radiolucent media such as dextrose 5% (D5) solution.
View Article and Find Full Text PDFA series of push-pull type meso-ester substituted BODIPY dyes 1-4 with intense near-infrared absorption, largely enhanced photoacoustic (PA) activity and excellent photo-stability were synthesized. The impact of the electronic structure on the PA activity was also discussed. Moreover, the in vitro and in vivo PA imaging were investigated, which suggested a passive targeting capacity in the tumor site.
View Article and Find Full Text PDFPhotoacoustic imaging (PAI) has emerged as an advantageous modality with high resolution and deep tissue penetration. However, its application is limited by the lack of available contrast agents. In this work, we report the synthesis of a naphthalene fused BODIPY dimer Na-BD, and the impact of the electronic structure on the oxidative cyclo-dehydrogenation process was systematically studied.
View Article and Find Full Text PDFPurpose: 32P BioSilicon is a new, implantable, radiological medical device that comprises particles of highly pure silicon encapsulating 32phosphorus (32P) for the treatment of unresectable solid tumors. Prior to administration, the device particles are suspended in a formulant which provides an even suspension of the intended dose for implantation. The primary objective of this animal trial study was to investigate the effects of intratumoral injection of 32)P BioSilicon on human hepatocellular (HepG2) and pancreatic carcinoma (2119) xenografts implanted in nude mice (BALB/c).
View Article and Find Full Text PDF