In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests.
View Article and Find Full Text PDFThe eco-evolutionary dynamics of species are fundamentally linked to the energetic constraints of their constituent individuals. Of particular importance is the interplay between reproduction and the dynamics of starvation and recovery. To elucidate this interplay, here we introduce a nutritional state-structured model that incorporates two classes of consumers: nutritionally replete, reproducing consumers, and undernourished, nonreproducing consumers.
View Article and Find Full Text PDFWe study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster of d - 1 other components. Innovation occurs through a series of trial-and-error events, each of which consists of randomly changing the cost of each component in a cluster, and accepting the changes only if the total cost of the cluster is lowered.
View Article and Find Full Text PDFMetabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism.
View Article and Find Full Text PDFWithin large taxonomic assemblages, the number of species with adult body mass M is characterized by a broad but asymmetric distribution, with the largest mass being orders of magnitude larger than the typical mass. This canonical shape can be explained by cladogenetic diffusion that is bounded below by a hard limit on viable species mass and above by extinction risks that increase weakly with mass. Here we introduce and analytically solve a simplified cladogenetic diffusion model.
View Article and Find Full Text PDF