Protein denoising diffusion probabilistic models are used for the de novo generation of protein backbones but are limited in their ability to guide generation of proteins with sequence-specific attributes and functional properties. To overcome this limitation, we developed ProteinGenerator (PG), a sequence space diffusion model based on RoseTTAFold that simultaneously generates protein sequences and structures. Beginning from a noised sequence representation, PG generates sequence and structure pairs by iterative denoising, guided by desired sequence and structural protein attributes.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
July 2024
Designing proteins with tailored structures and functions is a long-standing goal in bioengineering. Recently, deep learning advances have enabled protein structure prediction at near-experimental accuracy, which has catalyzed progress in protein design as well. We review recent studies that use structure-prediction neural networks to design proteins, via approaches such as activation maximization, inpainting, or denoising diffusion.
View Article and Find Full Text PDFRho family GTPases are activated with precise spatiotemporal control by guanine nucleotide exchange factors (GEFs). Guanine exchange factor H1 (GEF-H1), a RhoA activator, is thought to act as an integrator of microtubule (MT) and actin dynamics in diverse cell functions. Here we identify a GEF-H1 autoinhibitory sequence and exploit it to produce an activation biosensor to quantitatively probe the relationship between GEF-H1 conformational change, RhoA activity, and edge motion in migrating cells with micrometer- and second-scale resolution.
View Article and Find Full Text PDF