Murine gammaherpesvirus 68 (gammaHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics.
View Article and Find Full Text PDFArenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species.
View Article and Find Full Text PDFIn the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes.
View Article and Find Full Text PDFBackground: Experts in peptide:MHC binding studies are often able to estimate the impact of a single residue substitution based on a heuristic understanding of amino acid similarity in an experimental context. Our aim is to quantify this measure of similarity to improve peptide:MHC binding prediction methods. This should help compensate for holes and bias in the sequence space coverage of existing peptide binding datasets.
View Article and Find Full Text PDFQuantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity.
View Article and Find Full Text PDFDespite progress made over the past 25 years, existing immunotherapies have limited clinical effectiveness in patients with cancer. Immune tolerance consistently blunts the generated immune response, and the largely solitary focus on CD8+ T cell immunity has proven ineffective in the absence of CD4+ T cell help. To address these twin-tier deficiencies, we developed a translational model of melanoma immunotherapy focused on the exploitation of high-avidity CD4+ T cells that become generated in germline antigen-deficient mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2009
The immune response has been implicated as a critical factor in determining the success or failure of clinical gene therapy trials. Generally, such a response is elicited by the desired transgene product or, in some cases, the delivery system. In the current study, we report the previously uncharacterized finding that a therapeutic cassette currently being used for human investigation displays alternative reading frames (ARFs) that generate unwanted protein products to induce a cytotoxic T lymphocyte (CTL) response.
View Article and Find Full Text PDFIntroduction: Genetic associations of American sarcoidosis susceptibility implicate MHC class II allele, DRB1*1101. We previously reported immune recognition of Mycobacterium peptides from peripheral cells of 26 sarcoidosis subjects, 24 PPD- healthy volunteers, and eight with latent tuberculosis infection.
Materials And Methods: In order to further link these genetic and immunologic pillars of sarcoidosis pathogenesis, we performed flow cytometry on these same subjects to identify the cells responsible for immune responses to ESAT-6 and katG peptides, followed by HLA typing to determine allelic associations with recognition.
Vaccinia virus (VACV) induces a vigorous virus-specific CD8+ T cell response that plays an important role in control of poxvirus infection. To identify immunodominant poxvirus proteins and to facilitate future testing of smallpox vaccines in non-human primates, we used an algorithm for the prediction of VACV peptides able to bind to the common macaque MHC class I molecule Mamu-A*01. We synthesized 294 peptides derived from 97 VACV ORFs; 100 of these peptides did not contain the canonical proline at position three of the Mamu-A*01 binding motif.
View Article and Find Full Text PDFHLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans.
View Article and Find Full Text PDFInfection with one of the four serotypes of dengue virus (DENV1-4) can result in a range of clinical manifestations in humans, from dengue fever to the more serious dengue hemorrhagic fever/dengue shock syndrome. Although T cells have been implicated in the immunopathogenesis of secondary infections with heterologous DENV serotypes, the role of T cells in protection against DENV is unknown. In this study, we used a mouse-passaged DENV2 strain, S221, to investigate the role of CD8(+) T cells in the immune response to primary DENV infection.
View Article and Find Full Text PDFThe identification of gluten peptides eliciting intestinal T cell responses is crucial for the design of a peptide-based immunotherapy in celiac disease (CD). To date, several gluten peptides have been identified to be active in CD. In the present study, we investigated the recognition profile of gluten immunogenic peptides in adult HLA-DQ2(+) celiac patients.
View Article and Find Full Text PDFCytotoxic T cells are important in controlling herpes simplex virus type 2 (HSV-2) reactivation and peripheral lesion resolution. Humans latently infected with HSV-2 have cytotoxic T cells directed against epitopes present in tegument proteins. Studies in mice of immunity to HSV have commonly focused on immunodominant responses in HSV envelope glycoproteins.
View Article and Find Full Text PDFThe recent identification of a large array of different vaccinia virus-derived CD8(+) T-cell epitopes offers a unique opportunity to systematically analyze the correlation between protective efficacy and variables such as kinetics of expression and function of viral proteins, binding affinity to MHC molecules, immunogenicity, and viral antigen processing/presentation. In the current study, 49 different H-2(b) restricted epitopes were tested for their ability to protect peptide-immunized C57Bl/6 mice from lethal i.n.
View Article and Find Full Text PDFHepatitis C virus (HCV) is an important human pathogen that represents a model for chronic infection given that the majority of infected individuals fail to clear the infection despite generation of virus-specific T cell responses during the period of acute infection. Although viral sequence evolution at targeted MHC class I-restricted epitopes represents one mechanism for immune escape in HCV, many targeted epitopes remain intact under circumstances of viral persistence. To explore alternative mechanisms of HCV immune evasion, we analyzed patterns of expression of a major inhibitory receptor on T cells, programmed death-1 (PD-1), from the time of initial infection and correlated these with HCV RNA levels, outcome of infection, and sequence escape within the targeted epitope.
View Article and Find Full Text PDFBinding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized.
View Article and Find Full Text PDFIn human recurrent cutaneous herpes simplex, there is a sequential infiltrate of CD4 and then CD8 lymphocytes into lesions. CD4 lymphocytes are the major producers of the key cytokine IFN-gamma in lesions. They recognize mainly structural proteins and especially glycoproteins D and B (gD and gB) when restimulated in vitro.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection.
View Article and Find Full Text PDFBackground: Previously, we identified a set of HLA-A020.1-restricted trans-sialidase peptides as targets of CD8+ T cell responses in HLA-A0201+ individuals chronically infected by T. cruzi.
View Article and Find Full Text PDFContinuing antigenic drift allows influenza viruses to escape antibody-mediated recognition, and as a consequence, the vaccine currently in use needs to be altered annually. Highly conserved epitopes recognized by effector T cells may represent an alternative approach for the generation of a more universal influenza virus vaccine. Relatively few highly conserved epitopes are currently known in humans, and relatively few epitopes have been identified from proteins other than hemagglutinin and nucleoprotein.
View Article and Find Full Text PDFActivation of CD4(+) T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4(+) T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2(d). This is quite disparate to the H-2(b) setting, where only two epitopes have been identified.
View Article and Find Full Text PDFThe primary CD8(+) T cell response of C57BL/6J mice against the 28 known epitopes of lymphocytic choriomeningitis virus (LCMV) is associated with a clear immunodominance hierarchy whose mechanism has yet to be defined. To evaluate the role of epitope competition in immunodominance, we manipulated the number of CD8(+) T cell epitopes that could be recognized during LCMV infection. Decreasing epitope numbers, using a viral variant lacking dominant epitopes or C57BL/6J mice lacking H-2K(b), resulted in minor response increases for the remaining epitopes and no new epitopes being recognized.
View Article and Find Full Text PDFImmunomics research uses in silico epitope prediction, as well as in vivo and in vitro approaches. We inoculated BALB/c (H2d) mice with 17DD yellow fever vaccine to investigate the correlations between approaches used for epitope discovery: ELISPOT assays, binding assays, and prediction software. Our results showed a good agreement between ELISPOT and binding assays, which seemed to correlate with the protein immunogenicity.
View Article and Find Full Text PDFUnderstanding immunity to vaccinia virus (VACV) is important for the development of safer vaccines for smallpox- and poxvirus-vectored recombinant vaccines. VACV is also emerging as an outstanding model for studying CD8(+) T cell immunodominance because of the large number of CD8(+) T cell epitopes known for this virus in both mice and humans. In this study, we characterize the CD8(+) T cell response in vaccinated BALB/c mice by a genome-wide mapping approach.
View Article and Find Full Text PDFCD4 T lymphocytes regulate the adaptive immune response to most viruses, both by providing help to CD8 T cells and B cells as well as through direct antiviral activity. Currently, no mouse cytomegalovirus (MCMV)-specific CD4 T cell responses are known. In this study, we identify and characterize 15 I-A(b)-restricted CD4 T cell responses specific for MCMV epitopes.
View Article and Find Full Text PDF