Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network-HistoXGAN-capable of reconstructing representative histology using feature vectors produced by common feature extractors.
View Article and Find Full Text PDFA deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess MYCN-amplification status using H&E-stained whole slide images from the largest reported cohort to date. The model showed promising performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and MYCN-amplification with validation on an external test dataset, suggesting potential for AI-assisted neuroblastoma classification.
View Article and Find Full Text PDFBackground: Deployment and access to state-of-the-art precision medicine technologies remains a fundamental challenge in providing equitable global cancer care in low-resource settings. The expansion of digital pathology in recent years and its potential interface with diagnostic artificial intelligence algorithms provides an opportunity to democratize access to personalized medicine. Current digital pathology workstations, however, cost thousands to hundreds of thousands of dollars.
View Article and Find Full Text PDFA deep learning model using attention-based multiple instance learning (aMIL) and self-supervised learning (SSL) was developed to perform pathologic classification of neuroblastic tumors and assess -amplification status using H&E-stained whole slide digital images. The model demonstrated strong performance in identifying diagnostic category, grade, mitosis-karyorrhexis index (MKI), and -amplification on an external test dataset. This AI-based approach establishes a valuable tool for automating diagnosis and precise classification of neuroblastoma tumors.
View Article and Find Full Text PDFArtificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of novel molecular features. These approaches distill cancer histologic images into high-level features which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network - HistoXGAN - capable of reconstructing representative histology using feature vectors produced by common feature extractors.
View Article and Find Full Text PDFLarge language models such as ChatGPT can produce increasingly realistic text, with unknown information on the accuracy and integrity of using these models in scientific writing. We gathered fifth research abstracts from five high-impact factor medical journals and asked ChatGPT to generate research abstracts based on their titles and journals. Most generated abstracts were detected using an AI output detector, 'GPT-2 Output Detector', with % 'fake' scores (higher meaning more likely to be generated) of median [interquartile range] of 99.
View Article and Find Full Text PDFThe histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types.
View Article and Find Full Text PDFMachine learning methods have been growing in prominence across all areas of medicine. In pathology, recent advances in deep learning (DL) have enabled computational analysis of histological samples, aiding in diagnosis and characterization in multiple disease areas. In cancer, and particularly endocrine cancer, DL approaches have been shown to be useful in tasks ranging from tumor grading to gene expression prediction.
View Article and Find Full Text PDFA model's ability to express its own predictive uncertainty is an essential attribute for maintaining clinical user confidence as computational biomarkers are deployed into real-world medical settings. In the domain of cancer digital histopathology, we describe a clinically-oriented approach to uncertainty quantification for whole-slide images, estimating uncertainty using dropout and calculating thresholds on training data to establish cutoffs for low- and high-confidence predictions. We train models to identify lung adenocarcinoma vs.
View Article and Find Full Text PDFJCO Clin Cancer Inform
December 2021
Purpose: Metaiodobenzylguanidine (MIBG) scans are a radionucleotide imaging modality that undergo Curie scoring to semiquantitatively assess neuroblastoma burden, which can be used as a marker of therapy response. We hypothesized that a convolutional neural network (CNN) could be developed that uses diagnostic MIBG scans to predict response to induction chemotherapy.
Methods: We analyzed MIBG scans housed in the International Neuroblastoma Risk Group Data Commons from patients enrolled in the Children's Oncology Group high-risk neuroblastoma study ANBL12P1.