Publications by authors named "Siddhesh Salelkar"

Steady-state visually evoked potential (SSVEP) studies routinely employ simultaneous presentation of two temporally modulated stimuli, with SSVEP amplitude modulations serving to index top-down cognitive processes. However, the nature of SSVEP amplitude modulations as a function of competing temporal frequency (TF) has not been systematically studied, especially in relation to the normalization framework which has been extensively used to explain visual responses to multiple stimuli. We recorded spikes and local field potential (LFP) from the primary visual cortex (V1) as well as EEG from two awake macaque monkeys while they passively fixated plaid stimuli with components counterphasing at different TFs.

View Article and Find Full Text PDF

Local field potential (LFP) recorded with a microelectrode reflects the activity of several neural processes, including afferent synaptic inputs, microcircuit-level computations, and spiking activity. Objectively probing their contribution requires a design that allows dissociation between these potential contributors. Earlier reports have shown that the primate lateral geniculate nucleus (LGN) has a higher temporal frequency (drift rate) cutoff than the primary visual cortex (V1), such that at higher drift rates inputs into V1 from the LGN continue to persist, whereas output ceases, permitting partial dissociation.

View Article and Find Full Text PDF