Publications by authors named "Siddhartha P Sarma"

The mechanism by which small proteins fold, i.e., via intermediates or via a two-state mechanism, is a subject of intense investigation.

View Article and Find Full Text PDF

The CcdAB system expressed in the E.coli cells is a prototypical example of the bacterial toxin-antitoxin (TA) systems that ensure the survival of the bacterial population under adverse environmental conditions. The solution and crystal structures of CcdA, CcdB and of CcdB in complex with the toxin-binding C-terminal domain of CcdA have been reported.

View Article and Find Full Text PDF

Herein, we report the design, synthesis, structure, and electrochemical study of doubly C-B-N fused Ni(II) porphyrins (1-trans, 1-cis, 2-trans, and 2-cis). These compounds have been synthesized from AB type dipyridyl Ni(II) porphyrins (Ar=Ph for 1 a; Ar=CF for 2 a) via Lewis base-directed electrophilic aromatic borylation reactions. The solution state structures of these compounds have been established using H NMR, B NMR, H-H COSY, H-C HSQC, and F-C HSQC NMR techniques.

View Article and Find Full Text PDF

Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of , is a cysteine-rich peptide belonging to the I8 family of inhibitors.

View Article and Find Full Text PDF

The present study endeavors to decode the details of the transcriptional autoregulation effected by the MazE9 antitoxin of the Mycobacterium tuberculosis MazEF9 toxin-antitoxin system. Regulation of this bicistronic operon at the level of transcription is a critical biochemical process that is key for the organism's stress adaptation and virulence. Here, we have reported the solution structure of the DNA binding domain of MazE9 and scrutinized the thermodynamic and kinetic parameters operational in its interaction with the promoter/operator region, specific to the mazEF9 operon.

View Article and Find Full Text PDF

Of the 10 paralogs of MazEF Toxin-Antitoxin system in Mycobacterium tuberculosis, MazEF6 plays an important role in multidrug tolerance, virulence, stress adaptation and Non Replicative Persistant (NRP) state establishment. The solution structures of the DNA binding domain of MazE6 and of its complex with the cognate operator DNA show that transcriptional regulation occurs by binding of MazE6 to an 18 bp operator sequence bearing the TANNNT motif (-10 region). Kinetics and thermodynamics of association, as determined by NMR and ITC, indicate that the nMazE6-DNA complex is of high affinity.

View Article and Find Full Text PDF

The plant virus [a (+)-ssRNA sobemovirus] VPg protein is intrinsically disordered in solution. For the virus life cycle, the VPg protein is essential for replication and for polyprotein processing that is carried out by a virus-encoded protease. The nuclear magnetic resonance (NMR)-derived tertiary structure of the protease-bound VPg shows it to have a novel tertiary structure with an α-β-β-β topology.

View Article and Find Full Text PDF

Conopeptides are neurotoxic peptides in the venom of marine cone snails and have broad therapeutic potential for managing pain and other conditions. Here, we identified the single-disulfide peptides Czon1107 and Cca1669 from the venoms of and , respectively. We observed that Czon1107 strongly inhibits the human α3β4 (IC 15.

View Article and Find Full Text PDF

Drug resistance is a public health concern that threatens to undermine decades of medical progress. ESKAPE pathogens cause most nosocomial infections, and are frequently resistant to carbapenem antibiotics, usually leaving tigecycline and colistin as the last treatment options. However, increasing tigecycline resistance and colistin's nephrotoxicity severely restrict use of these antibiotics.

View Article and Find Full Text PDF

Conformational factors that predicate selectivity for valine or isoleucine binding to IlvN leading to the regulation of aceto hydroxy acid synthase I (AHAS I) of Escherichia coli have been determined for the first time from high-resolution (1.9-2.43 Å) crystal structures of IlvN·Val and IlvN·Ile complexes.

View Article and Find Full Text PDF

pH is an important factor that affects the protein structure, stability, and activity. Here, we probe the nature of the low-pH structural form of the homodimeric CcdB (controller of cell death B) protein. Characterization of CcdB protein at pH 4 and 300 K using circular dichroism spectroscopy, 8-anilino-1-naphthalene-sulphonate binding, and Trp solvation studies suggests that it forms a partially unfolded state with a dry core at equilibrium under these conditions.

View Article and Find Full Text PDF

Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b.

View Article and Find Full Text PDF

A hallmark of the crystallin proteins is their exceptionally high solubility, which is vital for maintaining the high refractive index of the eye lens. Human γC-crystallin is a major γ-crystallin whose mutant forms are associated with congenital cataracts but whose three-dimensional structure is not known. An earlier study of a homology model concluded that human γC-crystallin has low intrinsic solubility, mainly because of the atypical magnitude and fluctuations of its dipole moment.

View Article and Find Full Text PDF

The structure of a new cysteine framework (-C-CC-C-C-C-) "M"-superfamily conotoxin, Mo3964, shows it to have a β-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K(+) currents in rat dorsal root ganglion neurons and increases the reversal potential of the NaV1.2 channels.

View Article and Find Full Text PDF

Aniline-phenol recognition is studied in the crystal engineering context in several 1:1 cocrystals that contain a closed cyclic hydrogen-bonded [⋯O-H⋯N-H⋯]2 tetramer supramolecular synthon (II). Twelve cocrystals of 3,4,5- and 2,3,4-trichlorophenol with one of eight halogenated anilines have been characterized. Ten of these cocrystals contain an extended octamer synthon that is assembled with hydrogen bonding and π⋯π stacking that defines a Long-Range Synthon Aufbau Module (LSAM).

View Article and Find Full Text PDF

Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging.

View Article and Find Full Text PDF

The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb.

View Article and Find Full Text PDF

The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and ¹⁵N backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.

View Article and Find Full Text PDF

The solution structure of IlvN, the regulatory subunit of Escherichia coli acetohydroxyacid synthase I, in the valine-bound form has been determined using high-resolution multidimensional, multinuclear nuclear magnetic resonance (NMR) methods. IlvN in the presence or absence of the effector molecule is present as a 22.5 kDa dimeric molecule.

View Article and Find Full Text PDF

Sequence specific resonance assignments have been obtained for (1)H, (13)C and (15)N nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of (1)H and (13)C(α), (13)C(β) secondary chemical shifts, (3) JH(N)H(α) scalar coupling constants and sequential, short and medium range (1)H-(1)H NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.

View Article and Find Full Text PDF

Protein-protein interactions are crucial for many biological functions. The redox interactome encompasses numerous weak transient interactions in which thioredoxin plays a central role. Proteomic studies have shown that thioredoxin binds to numerous proteins belonging to various cellular processes, including energy metabolism.

View Article and Find Full Text PDF

GMP synthetase, a class I amidotransferase, catalyzes the last step of the purine biosynthetic pathway, where ammonia from glutamine is incorporated into xanthosine 5'-monophospate to yield guanosine 5'-monnophosphate as the main product. Combined biochemical, structural, and computational studies of glutamine amidotransferases have revealed the existence of physically separate active sites connected by molecular tunnels that efficiently transfer ammonia from the glutaminase site to the synthetase site. Here, we have investigated aspects of ammonia channeling in P.

View Article and Find Full Text PDF

The three dimensional structure of a 32 residue three disulfide scorpion toxin, BTK-2, from the Indian red scorpion Mesobuthus tamulus has been determined using isotope edited solution NMR methods. Samples for structural and electrophysiological studies were prepared using recombinant DNA methods. Electrophysiological studies show that the peptide is active against hK(v)1.

View Article and Find Full Text PDF

Acetohydroxyacid synthase (AHAS) is an enzyme involved in the biosynthesis of the branched chain amino acids viz, valine, leucine and isoleucine. The activity of this enzyme is regulated through feedback inhibition by the end products of the pathway. Here we report the backbone and side-chain assignments of ilvN, the 22 kDa dimeric regulatory subunit of E.

View Article and Find Full Text PDF