Publications by authors named "Siddhartha Bhoopathy"

This study aimed to validate the In vitro Dissolution Absorption System 2 (IDAS2) containing a biological barrier of Caco-2 or Madin-Darby canine kidney (MDCK) cell monolayer through dose sensitivity studies. Metoprolol and propranolol were selected as Biopharmaceutics Classification System (BCS) Class I model drugs, and atenolol as a Class III model drug. The IDAS2 is comprised of a dissolution vessel (500 mL) and two permeation chambers (2 × 8.

View Article and Find Full Text PDF

The purpose of this study aimed to evaluate the impact of the surface area per volume (SA/V) ratio on drug transport from two supersaturated solutions (SSs) of ketoconazole with and without hydroxypropyl methylcellulose (HPMC), used as a precipitation inhibitor. In vitro dissolution, membrane permeation with two SA/V ratios, and in vivo absorption profiles for both SSs were determined. For the SS without HPMC, a two-step precipitation process due to the liquid-liquid phase separation was observed; the constant concentration with approximately 80 % of the dissolved amount was maintained for the first 5 min and subsequently decreased between 5 and 30 min.

View Article and Find Full Text PDF

Topical corticosteroids are used to treat inflammation of the anterior segment. Due to their low water-solubility, they are often formulated as suspensions, but ocular bioavailability of the suspensions is not known. Herein, ocular pharmacokinetics of dexamethasone in albino rabbits was investigated following intracameral administration of dexamethasone solution and topical administration of three commercial suspensions: Maxidex®, TobraDex®, and TobraDexST®.

View Article and Find Full Text PDF

Brinzolamide is a topical carbonic anhydrase inhibitor which reduces the production of aqueous humor in the ciliary body, thereby reducing intra-ocular pressure. It is formulated as an ophthalmic suspension. The pharmacokinetics of ocular suspensions is not well understood.

View Article and Find Full Text PDF

Purpose: With the goal of quantifying P-gp transport kinetics, Part 1 of these manuscripts evaluates different compartmental models and Part 2 applies these models to kinetic data.

Methods: Models were developed to simulate the effect of apical efflux transporters on intracellular concentrations of six drugs. The effect of experimental variability on model predictions was evaluated.

View Article and Find Full Text PDF

Knowledge of free drug intracellular concentration is necessary to predict the impacts of drugs on intracellular targets. The goal of this study was to develop models to predict free intracellular drug concentrations in the presence of apical efflux transporters. The apical efflux transporter P-glycoprotein (P-gp), encoded by human gene multidrug resistance 1 (MDR1), was studied.

View Article and Find Full Text PDF

Human immunodeficiency virus protease inhibitors (PIs) modestly affect the plasma pharmacokinetics of tenofovir (TFV; -15% to +37% change in exposure) following coadministration with the oral prodrug TFV disoproxil fumarate (TDF) by a previously undefined mechanism. TDF permeation was found to be reduced by the combined action of ester cleavage and efflux transport in vitro. Saturable TDF efflux observed in Caco-2 cells suggests that at pharmacologically relevant intestinal concentrations, transport has only a limited effect on TDF absorption, thus minimizing the magnitude of potential intestinal drug interactions.

View Article and Find Full Text PDF

A liquid chromatography method using volatile ion-pairing reagents and tandem mass spectrometry was developed to obviate observed matrix effect for ionizable polar compounds. The present study investigated the addition of volatile ion-pair reagents to the reconstitution solution instead of the mobile phase to enhance the efficiency of chromatographic separation and minimize the sensitivity loss due to the formation of ion-pairs. The volatile ion-pair reagents used were perfluorinated carboxylic acids with n-alkyl chains: heptafluorobutanoic acid (HFBA), nonafluoropentanoic acid (NFPA), tridecafluoroheptanoic acid (TDFHA) and pentadecafluorooctanoic acid (PDFOA).

View Article and Find Full Text PDF