Elicited upon violation of regularity in stimulus presentation, mismatch negativity (MMN) reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory error detection whereas P300 is associated with cognitive processes such as updating of the working memory. To date, there has been extensive research on the roles of MMN and P300 individually, because of their potential to be used as clinical markers of consciousness and attention, respectively. Here, we intend to explore with an unsupervised and rigorous source estimation approach, the underlying cortical generators of MMN and P300, in the context of prediction error propagation along the hierarchies of brain information processing in healthy human participants.
View Article and Find Full Text PDFVoices are the most relevant social sounds for humans and therefore have crucial adaptive value in development. Neuroimaging studies in adults have demonstrated the existence of regions in the superior temporal sulcus that respond preferentially to voices. Yet, whether voices represent a functionally specific category in the young infant's mind is largely unknown.
View Article and Find Full Text PDFSeamlessly extracting emotional information from voices is crucial for efficient interpersonal communication. However, it remains unclear how the brain categorizes vocal expressions of emotion beyond the processing of their acoustic features. In our study, we developed a new approach combining electroencephalographic recordings (EEG) in humans with a frequency-tagging paradigm to 'tag' automatic neural responses to specific categories of emotion expressions.
View Article and Find Full Text PDFVoices are arguably among the most relevant sounds in humans' everyday life, and several studies have suggested the existence of voice-selective regions in the human brain. Despite two decades of research, defining the human brain regions supporting voice recognition remains challenging. Moreover, whether neural selectivity to voices is merely driven by acoustic properties specific to human voices (e.
View Article and Find Full Text PDFPerception necessitates interaction among neuronal ensembles, the dynamics of which can be conceptualized as the emergent behavior of coupled dynamical systems. Here, we propose a detailed neurobiologically realistic model that captures the neural mechanisms of inter-individual variability observed in cross-modal speech perception. From raw EEG signals recorded from human participants when they were presented with speech vocalizations of McGurk-incongruent and congruent audio-visual (AV) stimuli, we computed the global coherence metric to capture the neural variability of large-scale networks.
View Article and Find Full Text PDFBrain oscillations from EEG and MEG shed light on neurophysiological mechanisms of human behavior. However, to extract information on cortical processing, researchers have to rely on source localization methods that can be very broadly classified into current density estimates such as exact low-resolution brain electromagnetic tomography (eLORETA), minimum norm estimates (MNE), and beamformers such as dynamic imaging of coherent sources (DICS) and linearly constrained minimum variance (LCMV). These algorithms produce a distributed map of brain activity underlying sustained and transient responses during neuroimaging studies of behavior.
View Article and Find Full Text PDF