Pollen grains are remarkable material composites, with various organelles in their fragile interior protected by a strong shell made of sporopollenin. The outermost layer of angiosperm pollen grains contains a lipid-rich substance called pollenkitt, which is a natural bioadhesive that helps preserve structural integrity when the pollen grain is exposed to external environmental stresses. In addition, its viscous nature enables it to adhere to various floral and insect surfaces, facilitating the pollination process.
View Article and Find Full Text PDFJ Pharm Bioallied Sci
February 2024
Mini-screws, also known as temporary anchorage devices (TADs), offer enhanced control and versatility in orthodontic treatment by providing stable anchorage points. This clinical study aims to evaluate the effectiveness of mini-screw-supported molar intrusion in orthodontic practice. For this clinical study, a cohort of 40 orthodontic patients with various malocclusions requiring molar intrusion as part of their treatment plan was recruited.
View Article and Find Full Text PDFThe hydrodynamic effects of macromolecular crowding inside cells are often studied in vitro by using polymers as crowding agents. Confinement of polymers inside cell-sized droplets has been shown to affect the diffusion of small molecules. Here we develop a method, based on digital holographic microscopy, to measure the diffusion of polystyrene microspheres that are confined within lipid vesicles containing a high concentration of solute.
View Article and Find Full Text PDFAnalyzing images taken through scattering media is challenging, owing to speckle decorrelations from perturbations in the media. For in-line imaging modalities, which are appealing because they are compact, require no moving parts, and are robust, negating the effects of such scattering becomes particularly challenging. Here we explore the use of conditional generative adversarial networks (cGANs) to mitigate the effects of the additional scatterers in in-line geometries, including digital holographic microscopy.
View Article and Find Full Text PDFCoronavirus pandemic has affected the whole world extensively and it is of immense importance to understand how the disease is spreading. In this work, we provide evidence of spatial dependence in the pandemic data and accordingly develop a new statistical technique that captures the spatio-temporal dependence pattern of the COVID-19 spread appropriately. The proposed model uses a separable Gaussian spatio-temporal process, in conjunction with an additive mean structure and a random error process.
View Article and Find Full Text PDFQuantitative phase imaging using holographic microscopy is a powerful and non-invasive imaging method, ideal for studying cells and quantifying their features such as size, thickness, and dry mass. However, biological materials scatter little light, and the resulting low signal-to-noise ratio in holograms complicates any downstream feature extraction and hence applications. More specifically, unwrapping phase maps from noisy holograms often fails or requires extensive computational resources.
View Article and Find Full Text PDFWe present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube.
View Article and Find Full Text PDFWe propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile.
View Article and Find Full Text PDFWe investigate the use of compact, lensless, single random phase encoding (SRPE) and double random phase encoding (DRPE) systems for automatic cell identification when multiple cells, either of the same or mixed classes, are in the field of view. A microscope glass slide containing the sample is inputted into the single or double random phase encoding system, which is then illuminated by a coherent or partially coherent light source generating a unique opto-biological signature (OBS) that is captured by an image sensor. Statistical features such as mean, standard deviation, skewness, kurtosis, entropy, and Pearson's correlation coefficient are extracted from the OBSs and used for cell identification with the random forest classifier.
View Article and Find Full Text PDFWe propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier.
View Article and Find Full Text PDFIn this Letter, we propose a novel compact optical system for automated cell identification. Our system employs pseudo-random encoding of the light modulated by the cells under inspection to capture the unique opto-biological signature of the micro-organisms by an image sensor and without using a microscope objective lens to magnify the object beam. The proposed instrument can be fabricated using a compact light source, a thin diffuser, and an image sensor connected to computational hardware; thus, it can be compact and cost effective.
View Article and Find Full Text PDF