Publications by authors named "Siddharth Gaba"

The conduction mechanism of a Pd/TaOx/Ta/Pd selector device, which exhibits high non-linearity (∼10(4)) and excellent uniformity, has been systematically investigated by current-voltage-temperature characterization. The measurement and simulation results indicate two dominant processes of selector current at opposite biases: thermionic emission and tunnel emission. The current-voltage-temperature behaviors of the selector can be well explained using the Simmons' trapezoidal energy barrier model.

View Article and Find Full Text PDF

Nanoscale resistive switching devices (memristive devices or memristors) have been studied for a number of applications ranging from non-volatile memory, logic to neuromorphic systems. However a major challenge is to address the potentially large variations in space and time in these nanoscale devices. Here we show that in metal-filament based memristive devices the switching can be fully stochastic.

View Article and Find Full Text PDF

Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments.

View Article and Find Full Text PDF

Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme.

View Article and Find Full Text PDF

We report the development of physics based models for resistive random-access memory (RRAM) devices. The models are based on a generalized memristive system framework and can explain the dynamic resistive switching phenomena observed in a broad range of devices. Furthermore, by constructing a simple subcircuit, we can incorporate the device models into standard circuit simulators such as SPICE.

View Article and Find Full Text PDF