Publications by authors named "Siddharth A Parameswaran"

The flat electronic bands in magic-angle twisted bilayer graphene (MATBG) host a variety of correlated insulating ground states, many of which are predicted to support charged excitations with topologically non-trivial spin and/or valley skyrmion textures. However, it has remained challenging to experimentally address their ground state order and excitations, both because some of the proposed states do not couple directly to experimental probes, and because they are highly sensitive to spatial inhomogeneities in real samples. Here, using a scanning single-electron transistor, we observe thermodynamic gaps at even integer moiré filling factors at low magnetic fields.

View Article and Find Full Text PDF

The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids, quantum Hall states, topological phases and quantum spin liquids.

View Article and Find Full Text PDF

Symmetry and topology are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pseudospin symmetry whose wavefunctions also have topological properties. Domain walls between distinct broken-symmetry QHFM phases are predicted to host gapless one-dimensional modes-that is, quantum channels that emerge because of a topological change in the underlying electronic wavefunctions at such interfaces. Although various QHFMs have been identified in different materials, interacting electronic modes at these domain walls have not been probed.

View Article and Find Full Text PDF