This study investigates the enantioselectivity challenges of asymmetric cyanation reactions using TADDOL derivatives as chiral ligands, specifically focusing on the cyanosilylation of aldehydes and the cyanation of imines. Despite extensive optimization efforts, the highest achieved ee was only modest, peaking at 71% for the cyanosilylation reaction, while the cyanation of imines consistently resulted in racemic mixtures. Our comprehensive analysis, supported by experimental data and computational modeling, reveals significant barriers to enhancing the enantioselectivity.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) represents a critical challenge worldwide, necessitating the pursuit of novel approaches to counteract bacterial and fungal pathogens. In this context, we explored the potential of cationic amino acid-enriched short peptides, synthesized solid-phase methods, as innovative antimicrobial candidates. Our comprehensive evaluation assessed the antibacterial and antifungal efficacy of these peptides against a panel of significant pathogens, including , , , , , and .
View Article and Find Full Text PDFPeptide synthesis has opened new frontiers in the quest for bioactive molecules with limitless biological applications. This study presents the synthesis of a series of novel isoquinoline dipeptides using advanced spectroscopic techniques for characterization. These compounds were designed with the goal of discovering unexplored biological activities that could contribute to the development of novel pharmaceuticals.
View Article and Find Full Text PDFA new library of peptide-heterocycle hybrids consisting of an indole-3-carboxylic acid constituent conjugated with short dipeptide motifs was designed and synthesized by using the solid phase peptide synthesis methodology. All the synthesized compounds were characterized by spectroscopic techniques. Additionally, the synthesized compounds were subjected to antimicrobial activities.
View Article and Find Full Text PDF10-Hydrazino-BODIPY, BoNHNH , presents slow rotation about the C10-NH bond that results in anisochronous H and C NMR signals. The assignment of the different signals has been made using traditional two-dimensional methods as well as spin-spin coupling constants and confirmed by DFT calculations (B3LYP) using the 6-311++G(d,p) basis set. The rotational barrier has been determined in three pairs of proton signals and compared with the calculated barrier.
View Article and Find Full Text PDFViscosity in the intracellular microenvironment shows a significant difference in various organelles and is closely related to cellular processes. Such microviscosity in live cells is often mapped and quantified with fluorescent molecular rotors. To enable the rational design of viscosity-sensitive molecular rotors, it is critical to understand their working mechanisms.
View Article and Find Full Text PDF